Красивоцветущие. Плодово-ягодные. Декоративно-лиственные

Магнитное поле

Картина силовых линий магнитного поля , создаваемого постоянным магнитом в форме стержня. Железные опилки на листе бумаги.

См. также: Электромагнитное поле

См. также: Магнетизм

Магни́тное по́ле - силовое поле , действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом , независимо от состояния их движения ; магнитная составляющая электромагнитного поля .

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц , хотя в заметно меньшей степени) (постоянные магниты ).

Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля .

Основной силовой характеристикой магнитного поля является вектор магнитной индукции (вектор индукции магнитного поля) . С математической точки зрения -векторное поле , определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).

Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал .

Магнитное поле можно назвать особым видом материи , посредством которого осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом .

Магнитные поля являются необходимым (в контексте ) следствием существования электрических полей.

Вместе, магнитное и электрическое поля образуют электромагнитное поле , проявлениями которого являются, в частности, свет и все другие электромагнитные волны .

Электрический ток (I), проходя по проводнику, создаёт магнитное поле (B) вокруг проводника.

    С точки зрения квантовой теории поля магнитное взаимодействие - как частный случай электромагнитного взаимодействия переносится фундаментальным безмассовым бозоном - фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля), часто (например, во всех случаях статических полей) - виртуальным.

    1 Источники магнитного поля

    2 Вычисление

    3 Проявление магнитного поля

    • 3.1 Взаимодействие двух магнитов

      3.2 Явление электромагнитной индукции

    4 Математическое представление

    • 4.1 Единицы измерения

    5 Энергия магнитного поля

    6 Магнитные свойства веществ

    7 Токи Фуко

    8 История развития представлений о магнитном поле

    9 См. также

Источники магнитного поля

Магнитное поле создаётся (порождается) током заряженных частиц , или изменяющимся во времени электрическим полем , или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам).

Вычисление

В простых случаях магнитное поле проводника с током (в том числе и для случая тока, распределённого произвольным образом по объёму или пространству) может быть найдено из закона Био - Савара - Лапласа или теоремы о циркуляции (она же - закон Ампера ). В принципе, этот способ ограничивается случаем (приближением) магнитостатики - то есть случаем постоянных (если речь идёт о строгой применимости) или достаточно медленно меняющихся (если речь идёт о приближенном применении) магнитных и электрических полей.

В более сложных ситуациях ищется как решение уравнений Максвелла .

Проявление магнитного поля

Магнитное поле проявляется в воздействии на магнитные моменты частиц и тел, на движущиеся заряженные частицы (или проводники с током). Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца , которая всегда направлена перпендикулярно к векторам v и B . Она пропорциональна заряду частицы q , составляющей скорости v , перпендикулярной направлению вектора магнитного поля B , и величине индукции магнитного поля B . В Международной системе единиц (СИ) сила Лоренца выражается так:

в системе единиц СГС :

где квадратными скобками обозначено векторное произведение .

Также (вследствие действия силы Лоренца на движущиеся по проводнику заряженные частицы) магнитное поле действует на проводник с током . Сила, действующая на проводник с током называется силой Ампера . Эта сила складывается из сил, действующих на отдельные движущиеся внутри проводника заряды.

Взаимодействие двух магнитов

Одно из наиболее часто встречающихся в обычной жизни проявлений магнитного поля - взаимодействие двух магнитов : одинаковые полюса отталкиваются, противоположные притягиваются. Представляется заманчивым описать взаимодействие между магнитами как взаимодействие между двумя монополями , и с формальной точки зрения эта идея вполне реализуема и часто весьма удобна, а значит практически полезна (в расчётах); однако детальный анализ показывает, что на самом деле это не полностью правильное описание явления (наиболее очевидным вопросом, не получающим объяснения в рамках такой модели, является вопрос о том, почему монополи никогда не могут быть разделены, то есть почему эксперимент показывает, что никакое изолированное тело на самом деле не обладает магнитным зарядом; кроме того, слабостью модели является то, что она неприменима к магнитному полю, создаваемому макроскопическим током, а значит, если не рассматривать её как чисто формальный приём, приводит лишь к усложнению теории в фундаментальном смысле).

Правильнее будет сказать, что на магнитный диполь , помещённый в неоднородное поле, действует сила, которая стремится повернуть его так, чтобы магнитный момент диполя был сонаправлен с магнитным полем. Но никакой магнит не испытывает действия (суммарной) силы со стороны однородного магнитного поля. Сила, действующая на магнитный диполь с магнитным моментом m выражается по формуле :

Сила, действующая на магнит (не являющийся одиночным точечным диполем) со стороны неоднородного магнитного поля, может быть определена суммированием всех сил (определяемых данной формулой), действующих на элементарные диполи, составляющие магнит.

Впрочем, возможен подход, сводящий взаимодействие магнитов к силе Ампера, а сама формула выше для силы, действующей на магнитный диполь, тоже может быть получена, исходя из силы Ампера.

Явление электромагнитной индукции

Основная статья: Электромагнитная индукция

Если поток вектора магнитной индукции через замкнутый контур меняется во времени, в этом контуре возникает ЭДС электромагнитной индукции , порождаемая (в случае неподвижного контура) вихревым электрическим полем, возникающим вследствие изменения магнитного поля со временем (в случае неизменного со временем магнитного поля и изменения потока из-за движения контура-проводника такая ЭДС возникает посредством действия силы Лоренца).

Математическое представление

Магнитное поле в макроскопическом описании представлено двумя различными векторными полями , обозначаемым как H и B .

H называется напряжённостью магнитного поля ; B называется магнитной индукцией . Термин магнитное поле применяется к обоим этим векторным полям (хотя исторически относился в первую очередь к H ).

Магнитная индукция B является основной характеристикой магнитного поля, так как, во-первых, именно она определяет действующую на заряды силу, а во-вторых, векторы B и E на самом деле являются компонентами единого тензора электромагнитного поля . Аналогично, в единый тензор объединяются величины H и электрическая индукция D . В свою очередь, разделение электромагнитного поля на электрическое и магнитное является совершенно условным и зависящим от выбора системы отсчёта, поэтому вектора B и E должны рассматриваться совместно.

Впрочем, в вакууме (при отсутствии магнетиков), а значит и на фундаментальном микроскопическом уровне, H и B совпадают (в системе СИ с точностью до условного постоянного множителя, а в СГС - полностью), что позволяет в принципе авторам, особенно тем, кто не использует СИ, выбирать для фундаментального описания магнитного поля H или B произвольно, чем они нередко и пользуются (к тому же, следуя в этом традиции). Авторы же, пользующиеся системой СИ, систематически отдают и здесь в этом отношении предпочтение вектору B , хотя бы потому, что именно через него прямо выражается сила Лоренца.

Единицы измерения

Величина B в системе единиц СИ измеряется в теслах (русское обозначение: Тл; международное: T), в системе СГС - в гауссах (русское обозначение: Гс; международное: G). Связь между ними выражается соотношениями: 1 Гс = 1·10 -4 Тл и 1 Тл = 1·10 4 Гс.

Векторное поле H измеряется в амперах на метр (А/м) в системе СИ и в эрстедах (русское обозначение: Э; международное: Oe) в СГС . Связь между ними выражается соотношением: 1 эрстед = 1000/(4π) A/м ≈ 79,5774715 А/м.

Энергия магнитного поля

Приращение плотности энергии магнитного поля равно:

H - напряжённость магнитного поля ,

B - магнитная индукция

В линейном тензорном приближении магнитная проницаемость есть тензор (обозначим его ) и умножение вектора на неё есть тензорное (матричное) умножение:

или в компонентах .

Плотность энергии в этом приближении равна:

Компоненты тензора магнитной проницаемости ,

Тензор, представимый матрицей, обратной матрице тензора магнитной проницаемости,

-магнитная постоянная

При выборе осей координат совпадающими с главными осями тензора магнитной проницаемости формулы в компонентах упрощаются:

Диагональные компоненты тензора магнитной проницаемости в его собственных осях (остальные компоненты в данных специальных координатах - и только в них! - равны нулю).

В изотропном линейном магнетике:

Относительная магнитная проницаемость

В вакууме и:

Энергию магнитного поля в катушке индуктивности можно найти по формуле:

Ф - магнитный поток ,

L - индуктивность катушки или витка с током.

Магнитные свойства веществ

С фундаментальной точки зрения, как это было указано выше, магнитное поле может создаваться (а значит - в контексте этого параграфа - и ослабляться или усиливаться) переменным электрическим полем, электрическими токами в виде потоков заряженных частиц или магнитными моментами частиц.

Конкретные микроскопические структуры и свойства различных веществ (а также их смесей, сплавов, агрегатных состояний, кристаллических модификаций и т. д.) приводят к тому, что на макроскопическом уровне они могут вести себя достаточно разнообразно под действием внешнего магнитного поля (в частности, ослабляя или усиливая его в разной степени).

В связи с этим вещества (и вообще среды) в отношении их магнитных свойств делятся на такие основные группы:

    Антиферромагнетики - вещества, в которых установился антиферромагнитный порядок магнитных моментов атомов или ионов : магнитные моменты веществ направлены противоположно и равны по силе.

    Диамагнетики - вещества, намагничивающиеся против направления внешнего магнитного поля.

    Парамагнетики - вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля.

    Ферромагнетики - вещества, в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов

    Ферримагнетики - материалы, у которых магнитные моменты вещества направлены противоположно и не равны по силе.

    К перечисленным выше группам веществ в основном относятся обычные твердые или (к некоторым) жидкие вещества, а также газы. Существенно отличается взаимодействие с магнитным полем сверхпроводников и плазмы .

Токи Фуко

Основная статья: Токи Фуко

Токи Фуко́ (вихревые токи) - замкнутые электрические токи в массивном проводнике , возникающие при изменении пронизывающего его магнитного потока . Они являются индукционными токами , образующимися в проводящем теле либо вследствие изменения во времени магнитного поля, в котором оно находится, либо в результате движения тела в магнитном поле, приводящего к изменению магнитного потока через тело или любую его часть. Согласно правилу Ленца , магнитное поле токов Фуко направлено так, чтобы противодействовать изменению магнитного потока, индуцирующему эти токи .

История развития представлений о магнитном поле

Один из первых рисунков магнитного поля (Рене Декарт , 1644)

Хотя магниты и магнетизм были известны гораздо раньше, изучение магнитного поля началось в 1269 году, когда французский ученый Пётр Перегрин (рыцарь Пьер из Мерикура) отметил магнитное поле на поверхности сферического магнита, применяя стальные иглы, и определил, что получающиеся линии магнитного поля пересекались в двух точках, которые он назвал «полюсами » по аналогии с полюсами Земли. Почти три столетия спустя, Уильям Гильберт Колчестер использовал труд Петра Перегрина и впервые определённо заявил, что сама Земля является магнитом. Опубликованная в 1600 году, работа Гилберта « De Magnete » , заложила основы магнетизма как науки.

В 1750 году Джон Мичелл заявил, что магнитные полюса притягиваются и отталкиваются в соответствии с законом обратных квадратов. Шарль-Огюстен де Кулон экспериментально проверил это утверждение в 1785 году и прямо заявил, что Северный и Южный полюс не могут быть разделены. Основываясь на этой силе, существующей между полюсами, Симеон Дени Пуассон , (1781-1840) создал первую успешную модель магнитного поля, которую он представил в 1824 году. В этой модели магнитное H-поле производится магнитными полюсами и магнетизм происходит из-за нескольких пар (север/юг) магнитных полюсов (диполей).

Три открытия подряд бросили вызов этой «основе магнетизма». Во-первых, в 1819 году Ханс Кристиан Эрстед обнаружил, что электрический ток создает магнитное поле вокруг себя. Затем, в 1820 году, Андре-Мари Ампер показал, что параллельные провода, по которым идёт ток в одном и том же направлении, притягиваются друг к другу. Наконец, Жан-Батист Био и Феликс Савар в 1820 году открыли закон, названный законом Био-Савара-Лапласа , который правильно предсказывал магнитное поле вокруг любого провода, находящегося под напряжением.

Расширив эти эксперименты, Ампер издал свою собственную успешную модель магнетизма в 1825 году. В ней он показал эквивалентность электрического тока в магнитах, и вместо диполей магнитных зарядов модели Пуассона, предложил идею, что магнетизм связан с постоянно текущими петлями тока. Эта идея объясняла, почему магнитный заряд не может быть изолирован. Кроме того, Ампер вывел закон, названный его именем , который, как и закон Био-Савара-Лапласа, правильно описал магнитное поле, создаваемое постоянным током, а также была введена теорема о циркуляции магнитного поля . Кроме того, в этой работе, Ампер ввел термин «электродинамика » для описания взаимосвязи между электричеством и магнетизмом.

В 1831 году Майкл Фарадей открыл электромагнитную индукцию, когда он обнаружил, что переменное магнитное поле порождает электричество. Он создал определение этого феномена, которое известно как закон электромагнитной индукции Фарадея . Позже Франц Эрнст Нейман доказал, что для движущегося проводника в магнитном поле, индукция является следствием действия закона Ампера. При этом он ввел векторный потенциал электромагнитного поля , который, как позднее было показано, был эквивалентен основному механизму, предложенному Фарадеем.

В 1850 году лорд Кельвин , тогда известный как Уильям Томсон, различие между двумя магнитными полями обозначил как поля H и B . Первое было применимо к модели Пуассона, а второе - к модели индукции Ампера. Кроме того, он вывел как H и B связаны друг с другом.

Между 1861 и 1865 годами Джеймс Клерк Максвелл разработал и опубликовал уравнения Максвелла , которые объяснили и объединили электричество и магнетизм в классической физике . Первая подборка этих уравнений была опубликована в статье в 1861 году, озаглавленной « On Physical Lines of Force » . Эти уравнения были признаны действительными, хотя и неполными. Максвелл завершил свои уравнения в своей более поздней работе 1865 года « Динамическая теория электромагнитного поля » и определил, что свет представляет собой электромагнитные волны. Генрих Герц экспериментально подтвердил этот факт в 1887 году.

Хотя подразумеваемая в законе Ампера сила магнитного поля движущегося электрического заряда не была явно заявлена, в 1892 году Хендрик Лоренц вывел её из уравнений Максвелла. При этом классическая теория электродинамики была в основном завершена.

Двадцатый век расширил взгляды на электродинамику, благодаря появлению теории относительности и квантовой механики. Альберт Эйнштейн в своей статье 1905 года, где была обоснована его теория относительности, показал, что электрические и магнитные поля являются частью одного и того же явления, рассматриваемого в разных системах отсчета. (См. Движущийся магнит и проблема проводника - мысленный эксперимент , который в конечном итоге помог Эйнштейну в разработке специальной теории относительности ). Наконец, квантовая механика была объединена с электродинамикой для формирования квантовой электродинамики (КЭД).

Элементы магнитного поля Земли

Характеристикой магнитного поля Земли, как и всякого магнитного поля, служит его напряженность F или ее составляющие. Для разложения вектора F на составляющие обычно принимают прямоугольную систему координат, в которой ось х ориентируют по направлению географического меридиана, у - по направлению параллели, при этом положительным считается направление оси х к северу, а оси у - к востоку. Ось z в таком случае будет направлена сверху вниз к центру Земли.

Поместим начало координат в точку, где происходит наблюдение напряженности магнитного поля Земли. Проекция этого вектора на ось х носит название северной составляющей , проекция на ось у - восточной составляющей и проекция на ось z - вертикальной составляющей , и обозначаются они через Hx, Hy, Hz соответственно. Проекцию F на горизонтальную плоскость называют горизонтальной составляющей Н . Вертикальная плоскость, в которой лежит вектор F , называется плоскостью магнитного меридиана , а угол между географическим и магнитным меридианами - магнитным склонением , которое обозначается через D . Наконец, угол между горизонтальной плоскостью и направлением вектора F носит название магнитного наклонения I .

Нетрудно видеть, что при таком расположении осей координат, как показано на рисунке, положительным склонением будет восточное, т. е. когда вектор Н отклонен от севера к востоку, а отрицательным - западное.

Наклонение I положительно , когда вектор F направлен вниз от земной поверхности, что имеет место в северном полушарии, и отрицательно , когда F направлен вверх, т. е. в южном полушарии. F или Н - международные обозначения полного вектора магнитного поля Земли и величины древнего поля соответственно. Иногда напряженность магнитного поля Земли обозначают через Т , но так же обозначается и модуль полного вектора.

Склонение D , наклонение I , горизонтальная составляющая Н , вертикальная составляющая Hz , северная Hx и восточная Hy составляющие носят название элементов земного магнетизма , которые можно рассматривать как координаты конца вектора F в различных системах координат. Так, например, Hx, Hy, Hz - не что иное, как координаты конца вектора F в прямоугольной системе координат ; Hz, H и D - координаты в цилиндрической системе и F, D и I - координаты в сферической системе координат. В каждой из этих трех систем координаты независимы друг от друга.

Величины Hx, Hy, Hz и Н в ряде случаев называют силовыми компонентами земного магнитного поля, а D и I - угловыми .

Как показывают наблюдения, ни один из элементов земного магнетизма не остается постоянным во времени, а непрерывно меняет свою величину от часа к часу и от года к году. Такие изменения получили название вариаций элементов земного магнетизма . Если наблюдать за этими вариациями в течение короткого промежутка времени (порядка суток), то можно заметить, что они имеют периодический характер, однако периоды, амплитуды и фазы их чрезвычайно разнообразны. Если же наблюдения ведутся длительно (несколько лет) с ежегодным определением среднегодового значения элементов, то легко установить, что среднегодовые значения также меняются, но характер изменения уже монотонный, и периодичность их выявляется лишь при очень большой длительности наблюдений (порядка многих десятков и сотен лет).

Медленные вариации элементов земного магнетизма получили название вековых вариаций , их величина обычно составляет десятки гамм в год. Вековые вариации элементов связаны с источниками, лежащими внутри земного шара, и вызываются теми же причинами, что и магнитное поле Земли.

Изменение среднегодовых значений того или иного элемента в течение года называется вековым ходом .

Быстротечные вариации периодического характера, весьма различные по амплитуде, имеют своим источником электрические токи в высоких слоях атмосферы.

Данные о быстротечных вариациях магнитного поля Земли в виде часовых и минутных значений элементов земного магнетизма представлены на сайте Мирового центра данных по солнечно-земной физике.

Проекция Гаусса - Крюгера

Материал из Википедии - свободной энциклопедии

(перенаправлено с «Система координат Гаусса-Крюгера »)

Проекция Гаусса - Крюгера - поперечная цилиндрическая равноугольная картографическая проекция , разработанная немецкими учёными Карлом Гауссом и Луи Крюгером . Применение этой проекции даёт возможность практически без существенных искажений изобразить довольно значительные участки земной поверхности и, что очень важно, построить на этой территории систему плоских прямоугольных координат . Эта система является наиболее простой и удобной при проведении инженерных и топографо-геодезических работ .

Инструкция

Создание магнитного поля токаВозьмите проводник и подключите его к источнику тока, следя за тем, чтобы проводник не перегрелся. Поднесите к нему тонкую магнитную стрелку, которая может свободно вращаться. Устанавливая ее в разных точках пространства вокруг проводника, убедитесь в том, что она ориентируется по силовым линиям магнитного поля.

Магнитное поле постоянного магнитаВозьмите постоянный магнит и поднесите его к предмету, содержащему большое количество . Сразу появится магнитная сила, притягивающая магнит и железное тело - это главным доказательством магнитного поля. Положите постоянный магнит на лист бумаги и посыпьте вокруг него мелкой железной стружкой. Через некоторое время на листе бумаги появится , иллюстрирующий наличие силовых линий магнитного поля. Их называют линии магнитной индукции.

Создание магнитного поля электромагнитаКатушку с изолированным проводом присоедините к источнику электрического тока через . Для того чтобы избежать перегорания провода, установите реостат на максимальное сопротивление. В катушку поместите магнитопровод. Это может быть кусок мягкого железа или . Если предполагается получить магнитное поле , железный сердечник (магнитопровод) необходимо набирать из пластин, изолированных между собой, чтобы избежать токов Фуко, которые будут препятствовать генерации магнитного поля. Подключив цепь к источнику тока, начинайте медленно двигать ползунок реостата, наблюдая за тем, чтобы обмотка катушки не перегревалась. При этом магнитопровод превратится в мощный магнит, притянуть и удержать массивные железные предметы.

Создание мощных электромагнитов – это сложная техническая задача. В промышленности, как, собственно, и в повседневной жизни магниты большой мощности необходимы. В ряде государств уже даже работают поезда на магнитной подушке. Машины с электромагнитным двигателем скоро массово появятся и у нас под маркой «Ё-мобиль». Но как создаются магниты большой мощности?

Инструкция

В промышленности же повсеместно применяются мощные электромагниты. Их конструкция куда сложнее, чем у постоянных магнитов . Для создания мощного электромагнита необходима катушка, состоящая из обмотки из медного провода, а также железного сердечника. Сила в данном случае зависит только от силы тока, проведённого через катушки, а также количества витков провода на обмотке. Стоит отметить, что при определённой силе тока намагничивание железного сердечника подвергается насыщению. Поэтому самые мощные промышленные магниты изготовляются без него. Вместо этого добавляется ещё некоторое провода. В большинстве же мощных промышленных магнитах с железным число витков провода редко превышает десяти на метр, а используемая сила тока – двух ампер.

Магнитное поле может создаваться движением заряженных частиц, переменным электрическим полем или магнитными моментами частиц (в постоянных магнитах). Магнитное и электрическое поля являются проявлениями одного общего поля – электромагнитного.

Упорядоченное движение заряженных частиц

Упорядоченное движение заряженных частиц в проводниках называется электрическим током. Для его получения нужно создать электрическое поле при помощи источников тока, совершающих работу по разделению зарядов – положительных и отрицательных. Механическая, внутренняя или какая-либо другая энергия в источнике превращается в электрическую.

По каким явлениям можно судить о наличии тока в цепи

Движение заряженных частиц в проводнике невозможно увидеть. Однако судить о наличии тока в цепи можно по косвенным признакам. К таким явлениям относятся, к примеру, тепловое, химическое и магнитное действия тока, причем последнее наблюдается в любых проводниках – твердых, жидких и газообразных.

Как возникает магнитное поле

Вокруг любого проводника с током существует магнитное поле. Оно создается движущимися . Если заряды неподвижны, они продуцируют вокруг себя только электрическое поле, но как только возникает ток, появляется еще и магнитное поле тока.

Какими способами можно обнаружить существование магнитного поля

Существование магнитного поля можно обнаружить разными способами. Например, можно использовать для этой цели маленькие железные опилки. В магнитном поле они намагничиваются и превращаются в магнитные стрелочки (как у компаса). Ось каждой такой стрелочки устанавливается по направлению действия сил магнитного поля.

Сам опыт выглядит так. Насыпьте на картонку тонкий слой железных опилок, пропустите сквозь него прямой проводник и включите ток. Вы увидите, как под действием магнитного поля тока опилки расположатся вокруг проводника по концентрическим окружностям. Эти линии, вдоль которых расположились магнитные стрелки, называются магнитными линиями магнитного поля. «Северный полюс» стрелки в каждой точке поля принято считать направлением .

Что представляют собой магнитные линии магнитного поля, созданного током

Магнитные линии магнитного поля тока – это замкнутые кривые, охватывающие проводник. С их помощью удобно изображать магнитные поля. И, поскольку магнитное поле есть во всех точках пространства вокруг проводника, через любую точку этого пространства можно провести магнитную линию. Направление магнитных линий зависит от направления тока в проводнике.

Введение

Что такое магнитное поле? Все о нем слышали, все видели, как намагниченная стрелка компаса всегда одним и тем же концом поворачивается в сторону северного магнитного полюса, а другим своим концом - всегда в сторону южного магнитного полюса. Человека от самого умного животного отличает то, что он любопытен, и хочет знать - а почему это так происходит, как это устроено, что так происходит. Именно для объяснения происходящего вокруг него древний человек придумал богов. Духи, боги в сознании людей были факторами, которыми обяснялось все, что человек видел, слышал, от чего зависела удача на охоте и на войне, кто передвигал Солнце по небу, кто устраивал грозу, проливал дождь и сыпал снег, в общем, все сущее, все происходящее. Представьте себе, к дедушке подходит маленький внук, показывает на молнию и спрашивает: что это такое, почему огонь из тучи летит в землю, и кто так громко стучит там в облаках? Если дед отвечал: не знаю, то внук смотрел на него с сожалением и начинал меньше уважать. Но когда дед говорил, что это бог Ярило ездит на колеснице по облакам и огненные стрелы в нехороших людей пускает, внук слушал и еще больше уважал своего деда. Он начинал меньше бояться грома и молнии, так как знал, что он же хороший, поэтому Ярило в него стрелять не станет.

В раннем детстве, когда я начинал шалить, бабушка Анна говорила: "Шурка, смотри, не шали, а то боженька камешком стукнет". И при этом показывала на икону в красном углу на полке-божнице. Я на некоторое время притихал, с опаской посматривал на сурового мужика, нарисованного на доске, но как-то раз усомнился в его способности кидаться камнями. Поставил на лавку табуретку, влез на нее и заглянул на полку за икону. Никаких камушков я там не увидел, и когда бабка стала в очередной раз стращать меня, рассмеялся и заявил: "Никаких камней у него нет, и вообще он нарисованный и кидаться не может. И нечего пугать меня боженькой, я уже не маленький". Вот так же и наш далекий предок когда-то засомневался, что это Ярило по небу катается и стрелы пускает. Вот тогда-то и зародилось рациональное знание, когда люди засомневались во всемогуществе богов. Но чем же они их заменили? А заменили они богов законами природы, и крепко стали верить этим законам. Но там, где законами природы человек объяснить происходящее не может, он оставил место для богов. Именно поэтому религия и наука сосуществуют в обществе до сих пор.

Помню, как старшие приятели показали нам, малышам, фокус. По столу сам по себе двигался положенный на стол железный гвоздь, а парень-фокусник под столом передвигал свою руку. Гвоздь следовал за рукой. Мы удивленно таращили на это глаза и не понимали, почему гвоздь движется. Когда я рассказал матери об этом фокусе, то она разъяснила, что в руке у парня был магнит, который притягивает к себе железо, что парень под столом двигал не просто рукой, а в руке у него был магнит. На тот момент это объяснение удовлетворило мое любопытство, но чуть позже я уже хотел понять, а почему магнит на расстоянии - через доску стола, через слой воздуха - притягивает к себе железо. На этот вопрос ни мама, ни отец мне ответить не смогли. Пришлось ждать до школы. Там на уроке физики учитель объяснил, что магнит действует на железо через магнитное поле, которое создает вокруг себя, что у магнита есть два полюса - северный и южный, что из северного выходят какие-то невидимые магнитные силовые линии, которые дугой изгибаются и входят в южный полюс.

Тогда я впервые задумался: значит, в мире, кроме видимого, слышимого и осязаемого, есть кое-что невидимое и неосязаемое. Тогда я подумал: а что, если бог невидим и неосязаем - как это магнитное поле. Его вроде бы и нет нигде, а он все же существует. А на иконах в виде мужика его так, по глупости, изображают. Не знал я тогда, что до этого еще раньше меня додумался и философ Спиноза, который стал рассматривать Природу и Бога как единое и неразделимое, видимое и невидимое. Природа и есть Бог!

Помню, я пытался представить это магнитное поле, состоящее из силовых линий, и ничего не понимал. Я этих линий не видел и не слышал. Они ничем не пахли, и поверить в то, что вокруг нас может быть что-то, что мы никак не ощущаем, мне тогда было не очень понятно. Железные гвозди и опилки чувствовали магнитное поле и ориентировались и двигались в нем, а я со своими тонкими органами чувств ничего не чувствовал. Эта ущербность меня откровенно угнетала. Но не одного меня. А. Эйнштейн писал о сильном удивлении от увиденных свойств магнита, который ему в детстве подарил на день рождения отец, от того, что он не мог понять, как и почему эти притягательные свойства магнита происходят.

Когда учительница обществоведения уже в 10-м классе познакомила нас с определением материи, данным В.И. Лениным: "материя это то, что существует вокруг нас и дано нам в ощущениях", я возмущенно ее спросил: "а вот магнитное поле мы не ощущаем, а оно существует, оно что - разве не материя?". Да, одних органов чувств недостаточно, чтобы воспринимать все формы материи, требуется еще разум, с помощью которого если мы что-то и не чувствуем - не ощущаем, то понимаем, что оно есть. Поняв это, я решил изучать науки и развивать свой ум, надеясь, что это позволит мне многое понять. Но по мере того как я расширял пространство понятного мне, непонятное не исчезало, а только отодвигалось, и линия горизонта непонятного становилась все длиннее, так как круг познанного увеличивался и длина его окружности, отделяющая понятое моим разумом от непознанного и непонятного, тоже увеличивалась. В этом и состоит главный парадокс познания: чем больше мы узнаем и понимаем, тем больше мы еще не знаем. Об этом ученом незнании писал еще Николай Кузанский, которого почему-то считают философом схоластиком, хотя открытая им истина скорее говорит все же о том, что он был диалектиком.

Первые упоминания о породах, способных притягивать железо, относятся к античным временам. С магнитом связана старинная легенда о пастухе Магнусе, который однажды обнаружил, что его железный посох и сандалии, подбитые железными гвоздями, притягиваются к неведомому камню. С тех пор данный камень стали именовать «камнем Магнуса», или магнитом.

Происхождение и сущность магнитного поля Земли, как и магнитных полей вообще, и по сей день остается загадкой. Существует много гипотез - вариантов объяснения этого феномена, но истина по-прежнему "где-то там". Вот так определяют магнитное поле ученые физики: "Магнитное поле - это силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения". И далее: "Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени). Кроме этого, оно появляется при наличии изменяющегося во времени электрического поля". Я бы не сказал, что с логической точки зрения это блестящее определение. Сказать, что магнитное поле - это силовое поле, значит не сказать ничего, это - тавталогия. Ведь гравитационное поле - тоже силовое поле, и поле ядерных сил - силовое! Указание на воздействие магнитного поля на движущиеся электрические заряды кое о чем говорит, это описание одного из свойств магнитного поля. Но непонятно, действует ли магнитное поле непосредственно на частицы, имеющие электрические заряды, или оно действует на магнитные поля, образуемые этими частицами, а те (трансформированные поля частиц) уже в свою очередь действуют на частицы - передают им полученный импульс.

Впервые магнитные явления начал изучать английский врач и физик Уильям Гильберт, написавший работу «О магните, магнитных телах и о большом магните - Земле». Тогда считали, что электричество и магнетизм не имеют ничего общего. Но в начале XIX в. датский ученый Г.Х. Эрстед в 1820 г. экспериментальным путем доказал, что магнетизм является одной из скрытых форм электричества, и подтвердил это на опыте. Этот опыт повлек за собой лавину новых открытий, имевших огромное значение. Вокруг проводников с электрическим током возникает поле, которое было названо магнитным . Пучок движущихся электронов оказывает действие на магнитную стрелку, аналогичное проводнику с током (опыт Иоффе). Конвекционные токи электрически заряженных частиц по своему действию на магнитную стрелку подобны токам проводимости (опыт Эйхенвальда).

Магнитное поле создается только движущимися электрическими зарядами или движущимися электрически заряженными телами, а также постоянными магнитами. Этим магнитное поле отличается от электрического поля, которое создают как движущиеся, так и неподвижные электрические заряды.

Линии вектора магнитной индукции (В) всегда замкнуты и охватывают проводник с током, а линии напряженности электрического поля начинаются на положительных и кончаются на отрицательных зарядах, они разомкнуты. Линии магнитной индукции постоянного магнита выходят из одного полюса, называемого северным (N) и входят в другой - южный (S). Вначале кажется, что здесь наблюдается полная аналогия с линиями напряженности электрического поля (Е). Полюса магнитов играют роль магнитных зарядов. Однако если разрезать магнит, картина сохраняется, получаются более мелкие магниты - но каждый со своими северным и южным полюсами. Магнитные полюса разделить так, что северный полюс будет у одного куска, а южный у другого, невозможно, потому что свободных (дискретных) магнитных зарядов, в отличие от дискретных электрических зарядов, в природе не существует.

Магнитные поля, существующие в природе, разнообразны по масштабам и по вызываемым ими эффектам. Магнитное поле Земли, образующее земную магнитосферу, простирается на расстоянии 70-80 тысяч километров в направлении к Солнцу и на многие миллионы километров в обратном направлении. Происхождение магнитного поля Земли связывают с движениями жидкого вещества, проводящего электрически заряженные частицы в земном ядре. Мощными магнитными полями обладают Юпитер и Сатурн. Магнитное поле Солнца играет важнейшую роль во всех происходящих на Солнце процессах - вспышках, появлении пятен и протуберанцев, рождении солнечных космических лучей. Магнитное поле широко применяется в различных отраслях промышленности: при погрузке железного лома, при очистке муки на хлебозаводах от металлических примесей, а также в медицине для лечения больных.

Что такое магнитное поле

Основной силовой характеристикой магнитного поля является вектор магнитной индукции . Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина). Вообще-то вектор - это величина, имеющая направление в пространстве, следовательно, можно говорить и о направлении магнитной индукции и о ее величине. Но сказать, что магнитное поле - это только направление магнитной индукции, значит, не очень-то и много разъяснить. Есть еще одна характеристика магнитного поля - векторный потенциал. В качестве основной характеристики магнитного поля в вакууме выбирают не вектор магнитной индукции, а вектор напряжённости магнитного поля . В вакууме эти два вектора совпадают, а в веществе нет, но с систематической точки зрения следует считать основной характеристикой магнитного поля именно векторный потенциал .

Магнитное поле можно назвать особым видом материи, посредством которого осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом. Магнитные поля являются необходимым (в контексте специальной теории относительности) следствием существования электрических полей. Магнитное и электрическое поля вместе образуют электромагнитное поле, проявлениями которого являются, в частности, свет и все другие электромагнитные волны. С точки зрения квантовой теории поля, магнитное взаимодействие - как частный случай электромагнитного взаимодействия - переносится фундаментальным безмассовым бозоном - фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля), часто (например, во всех случаях статических полей) виртуальным. Магнитное поле создаётся (порождается) током заряженных частиц, или изменяющимся во времени электрическим полем, или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам).

По-моему, эти определения весьма туманны. Понятно, что магнитное поле - не пустота, а особый вид материи - часть реального мира. Понятно, что магнитное поле неразрывно связано с движением электрических зарядов - электрическим током. А вот как магнитное поле с электрическим полем образуют единое электромагнитное поле, непонятно. Скорее всего, существует некое единое поле, которое в зависимости от обстоятельств проявляет себя то как магнитное поле, то как электрическое. Прямо как гермафродит какой-то, который в определенных обстоятельствах может быть мальчиком, а в других обстоятельствах - девочкой.

Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца. Эта сила всегда направлена перпендикулярно к вектору скорости движения частицы - v и векторному потенциалу магнитного поля - B . Эта сила пропорциональна заряду частицы q , ее скорости v , перпендикулярна направлению вектора магнитного поля B и пропорциональна величине индукции магнитного поля B . Поясню тем, кто совсем позабыл школьную физику: сила - это причина, вызывающая ускорение движения тел. Здесь сила действует не на массу частицы, а на ее заряд. Этим сила Лоренца отличается от силы гравитации, которая действует на массу частиц (тел), поскольку масса тела - это его гравитационный заряд.

Магнитное поле действует и на проводник с током. Сила, действующая на проводник с током, называется силой Ампера. Эта сила складывается из сил, действующих на отдельные движущиеся внутри проводника электрические заряды. Это и есть сила тока, измеряемая в амперах.

При взаимодействии двух магнитов их одинаковые полюсы отталкиваются, а противоположные притягиваются. Однако детальный анализ показывает, что на самом деле это не полностью правильное описание явления. Непонятно, почему в рамках такой модели диполи никогда не могут быть разделены. Эксперимент показывает, что никакое изолированное тело на самом деле не обладает магнитным зарядом одного знака. Всякое намагниченное тело имеет два полюса - северный и южный. На магнитный диполь, помещённый в неоднородное магнитное поле, действует сила, которая стремится повернуть его так, чтобы магнитный момент диполя был сонаправлен (совпадал по направлению) с магнитным полем, в которое этот магнитный диполь поместили.

В 1831 г. Майкл Фарадей обнаружил, что в замкнутом проводнике, если его поместить в изменяющемся магнитном поле, возникает электрический ток. Это явление получило название электромагнитная индукция.

М. Фарадей обнаружил, что электродвижущая сила (ЭДС), возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока, проходящего через часть электрического контура, находящуюся в это магнитное поле. Величина (ЭДС) не зависит от того, что является причиной изменения потока - изменение самого магнитного поля или движение части контура в магнитном поле. Электрический ток, вызванный ЭДС, называется индукционным током. Это открытие позволило создать генераторы электрического тока и создать, по-сути, нашу электрическую цивилизацию . Кто бы мог подумать в 30-е годы XIX в., что открытие М. Фарадея было эпохальным цивилизационным открытием, определившим будущее человечества?

В свою очередь, магнитное поле может создаваться и изменяться (ослабляться или усиливаться) переменным электрическим полем, создаваемым электрическими токами в виде потоков заряженных частиц. Микроскопическая структура вещества, помещенного в переменное магнитное поле, влияет на силу возникающего в нем тока. Одни структуры ослабляют возникающий электрический ток, а другие усиливают его в разной степени. Одно из первых исследований магнитных свойств вещества ваыполнил Пьер Кюри. В связи с этим вещества в отношении их магнитных свойств делятся на две основные группы:

1. Ферромагнетики - вещества, в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов частиц вещества.

2. Антиферромагнетики - вещества, в которых установился антиферромагнитный порядок магнитных моментов частиц вещества - атомов или ионов: магнитные моменты частиц вещества направлены противоположно и равны по силе.

Различают также вещества диамагнетики и вещества парамагнетики.

Диамагнетики - вещества, намагничивающиеся против направления внешнего магнитного поля.

Парамагнетики - вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля.

Типы упорядочения магнитных моментов атомов в парамагнитных (а), ферромагнитных (б) и антиферромагнитных (в) веществах. Рисунок с сайта: http://encyclopaedia.biga.ru/enc/science_and_technology/ MAGNITI_I_MAGNITNIE_SVOSTVA_VESHCHESTVA.html

К перечисленным выше группам веществ в основном относятся обычные твердые, жидкие и газообразные вещества. От них существенно отличаются своим взаимодействием с магнитным полем сверхпроводники и плазмы.

Магнитное поле ферромагнетиков (пример - железа) заметно на значительных расстояниях.

Магнитные свойства парамагнетиков аналогичны свойствам ферромагнетиков, но выражены гораздо слабее - на меньшем расстоянии.

Диамагнетики не притягиваются, а отталкиваются магнитом, сила, действующая на диамагнетики, направлена противоположно той, что действует на ферромагнетики и парамагнетики.

Согласно правилу Ленца, магнитное поле индуцируемого в магнитном поле электрического тока направлено так, чтобы противодействовать изменению магнитного потока, индуцирующего этот ток. Хочу заметить, что взаимодействие переменного магнитного поля и индуцируемого им электрического тока и электрического поля соответствует принципу Ле-Шателье. Это не что иное, как автоторможение процесса, присущее всем процессам, происходящим в реальном мире.

Согласно принципу Ле-Шателье, всякий процесс, происходящий в мире, порождает процесс, имеющий противоположное направление и тормозящий процесс, его вызывающий. По-моему, это один из главных законов мироздания, которому почему-то не уделяют должного внимание ни физики, ни философы.

Все вещества в большей или меньшей степени обладают магнитными свойствами. Если два проводника с электрическими токами поместить в какую либо среду, то сила магнитного взаимодействия между токами изменяется. Индукция магнитного поля, создаваемого электрическими токами в веществе, отличается от индукции магнитного поля, создаваемого теми же токами в вакууме. Физическая величина, показывающая, во сколько раз индукция магнитного поля в однородной среде отличается по модулю от индукции магнитного поля в вакууме, называется магнитной проницаемостью. Максимальной магнитной проницаемостью обладает вакуум.

Магнитные свойства веществ определяются магнитными свойствами атомов - электронов, протонов и нейтронов, входящих в состав атомов. Магнитные свойства протонов и нейтронов почти в 1000 раз слабее магнитных свойств электронов. Поэтому магнитные свойства вещества в основном определяются электронами, входящими в состав его атомов.

Одним из важнейших свойств электрона является наличие у него не только электрического, но и магнитного поля. Собственное магнитное поле электрона, возникающее якобы при вращении его вокруг своей оси, называют спиновым полем (spin - вращение). Но электрон создает магнитное поле также и за счет своего движения вокруг ядра атома, которое можно уподобить круговому микротоку. Спиновые поля электронов и магнитные поля, обусловленные их орбитальными движениями, и определяют широкий спектр магнитных свойств веществ.

Поведение парамагнетика (1) и диамагнетика (2) в неоднородном магнитном поле. Рисунок с сайта:http://physics.ru/courses/op25part2/content/chapter1/section/ paragraph19/theory.html

Вещества крайне разнообразны по своим магнитным свойствам. Например, платина, воздух, алюминий, хлористое железо - парамагнетики, а медь, висмут, вода - диамагнетики. Образцы из парамагнетика и диамагнетика, помещенные в неоднородное магнитное поле между полюсами электромагнита, ведут себя по-разному - парамагнетики втягиваются в область сильного поля, а диамагнетики, наоборот, выталкиваются из него.

Пара- и диамагнетизм объясняется поведением электронных орбит во внешнем магнитном поле. У атомов диамагнитных веществ в отсутствие внешнего поля собственные магнитные поля электронов и поля, создаваемые их орбитальным движением, полностью скомпенсированы. Возникновение диамагнетизма связано с действием силы Лоренца на электронные орбиты. Под действием этой силы изменяется характер орбитального движения электронов и нарушается компенсация магнитных полей. Возникающее при этом собственное магнитное поле атома оказывается направленным против направления индукции внешнего поля.

В атомах парамагнитных веществ магнитные поля электронов скомпенсированы не полностью, и атом оказывается подобным маленькому круговому току. В отсутствие внешнего поля эти круговые микротоки ориентированы произвольно, так что суммарная магнитная индукция равна нулю. Внешнее магнитное поле оказывает ориентирующее действие - микротоки стремятся сориентироваться так, чтобы их собственные магнитные поля оказались направленными по направлению индукции внешнего поля. Из-за теплового движения атомов ориентация микротоков никогда не бывает полной. При усилении внешнего поля ориентационный эффект возрастает, так что индукция собственного магнитного поля парамагнитного образца растет прямо пропорционально индукции внешнего магнитного поля. Полная индукция магнитного поля в образце складывается из индукции внешнего магнитного поля и индукции собственного магнитного поля, возникшего в процессе намагничивания.

Диамагнитными свойствами обладают атомы любых веществ, но во многих случаях их диамагнетизм маскируется сильным парамагнитным эффектом. Явление диамагнетизма было открыто М. Фарадеем в 1845 г.

Ферромагнетики могут сильно намагничиваться в магнитном поле, их магнитная проницаемость очень велика. К рассматриваемой группе относятся четыре химических элемента: железо, никель, кобальт, гадолиний. Из них наибольшей магнитной проницаемостью обладает железо. Ферромагнетиками могут быть различные сплавы этих элементов, например, керамические ферромагнитные материалы - ферриты.

Для каждого ферромагнетика существует определенная температура (так называемая температура или точка Кюри), выше которой ферромагнитные свойства исчезают, и вещество становится парамагнетиком. У железа, например, температура Кюри равна 770°C, у кобальта 1130°C, у никеля 360°C.

Ферромагнитные материалы бывают магнито-мягкие и магнито-жесткие. Магнито-мягкие ферромагнитные материалы почти полностью размагничиваются, когда внешнее магнитное поле становится равным нулю. К магнито-мягким материалам относится, например, чистое железо, электротехническая сталь и некоторые сплавы. Эти материалы применяются в приборах переменного тока, в которых происходит непрерывное перемагничивание, то есть изменение направления магнитного поля (трансформаторы, электродвигатели и т. п.).

Магнито-жесткие материалы в значительной мере сохраняют свою намагниченность и после удаления их из магнитного поля. Примерами магнито-жестких материалов могут служить углеродистая сталь и ряд специальных сплавов. Магнито-жесткие материалы используются в основном для изготовления постоянных магнитов.

Характерной особенностью процесса намагничивания ферромагнетиков является гистерезис, то есть зависимость намагничивания от предыстории образца. Кривая намагничивания B (B0) ферромагнитного образца представляет собой петлю сложной формы, которая называется петлей гистерезиса.

Зависимость магнитной проницаемости ферромагнетика от индукции внешнего магнитного поля. Намагничивается ферромагнетик вначале быстро, но достигнув максимума, намагничивается все медленнее. Рисунок с сайта:http://physics.ru/courses/op25part2/content/chapter1/section/ paragraph19/theory.html

Типичная петля гистерезися для магнитно-твердого ферромагнитного материала. В точке 2 достигается магнитное насыщение. Отрезок 1-3 определяет остаточную магнитную индукцию, а отрезок 1-4 - коэрцитивную силу, характеризующую способность образца противостоять размагничиванию. Рисунок с сайта: http://encyclopaedia.biga.ru/enc/science_and_technology/ MAGNITI_I_MAGNITNIE_SVOSTVA_VESHCHESTVA.html

Природа ферромагнетизма может быть понята на основе квантовых представлений. Ферромагнетизм объясняется наличием собственных (спиновых) магнитных полей у электронов. В кристаллах ферромагнитных материалов возникают условия, при которых, вследствие сильного взаимодействия спиновых магнитных полей соседних электронов, энергетически выгодной становится их параллельная ориентация. В результате такого взаимодействия внутри кристалла ферромагнетика возникают самопроизвольно намагниченные области. Эти области называются доменами. Каждый домен представляет из себя небольшой постоянный магнит.

Иллюстрация процесса намагничивания ферромагнитного образца:

а - вещество в отсутствие внешнего магнитного поля: его отдельные атомы, являющиеся маленькими магнитами, расположены хаотически; б - намагниченное вещество: под действием внешнего поля атомы ориентируются относительно друг друга в определенном порядке в соответствии с направлением внешнего поля. Рис. с сайта: http://encyclopaedia.biga.ru/enc/science_and_technology/ MAGNITI_I_MAGNITNIE_SVOSTVA_VESHCHESTVA.html

Домены в теории магнетизма - это малые намагниченные области материала, в которых моменты магнтного поля атомов ориентированы параллельно друг другу. Домены отделены друг от друга переходными слоями, называемыми блоховскими стенками. На рисунке показаны два домена с противоположной магнитной ориентацией и блоховская стенка между ними с промежуточной ориентацией. Рисунок с сайта: http://encyclopaedia.biga.ru/enc/science_and_technology/ MAGNITI_I_MAGNITNIE_SVOSTVA_VESHCHESTVA.html

В отсутствие внешнего магнитного поля направления векторов индукции магнитных полей в различных доменах ориентированы в большом кристалле хаотически. Такой кристалл оказывается ненамагниченным. При наложении же внешнего магнитного поля происходит смещение границ доменов так, что объем доменов, ориентированных по внешнему полю, увеличивается. С увеличением индукции внешнего поля возрастает магнитная индукция намагниченного вещества. В очень сильном магнитном внешнем поле домены, в которых собственное магнитное поле совпадает по направлению с внешним полем, поглощают все остальные домены, и наступает магнитное насыщение.

Следует однако помнить, что все эти рисунки и изображенные на них домены и атомы - всего лишь схемы или модели реальных явлений магнетизма, но не сами явления. Ими пользуются до тех пор, пока они не противоречат наблюдаемым фактам.

Простой электромагнит, предназначенный для захвата грузов. Источником энергии служит аккумуляторная батарея постоянного тока. Показаны также силовые линии поля электромагнита, которые можно выявить обычным методом железных опилок. Рисунок с сайта: http://encyclopaedia.biga.ru/enc/science_and_technology/ MAGNITI_I_MAGNITNIE_SVOSTVA_VESHCHESTVA.htmll

Возникновение магнитного поля в окрестностях проводника, по которому пропущен постоянный электрический ток, иллюстрирует электромагнит. Ток проходит по проводу, который намотан на стержень из ферромагнетика. Намагничивающая сила в этом случае равна произведению величины электрического тока в катушке на число витков в ней. Эта сила измеряется в амперах. Напряженность магнитного поля Н равна намагничивающей силе, приходящейся на единицу длины катушки. Таким образом, величина Н измеряется в амперах на метр; ею определяется намагниченность, приобретаемая материалом внутри катушки. В вакууме магнитная индукция B пропорциональна напряженности магнитного поля Н .

Индукция магнитного поля - это векторная величина, которая является силовой характеристикой магнитного поля. Направление магнитной индукции совпадает с направлением, который указывает магнитная стрелка в магнитном поле, а модуль данного вектора равен отношению модуля магнитной силы, которая действует на движущуюся перпендикулярно заряженную частицу, к модулю скорости и заряда этой частицы. Магнитная индукция согласно СИ измеряется в теслах (Тл). В системе СГС магнитная индукция измеряется в гауссах (Гс). При этом 1 Тл = 104 Гс.

Крупные электромагниты с железными сердечниками и очень большим числом витков, работающие в непрерывном режиме, обладают большой намагничивающей силой. Они создают магнитную индукцию в промежутке между полюсами до 6 теслов (Тл). Величина индукции ограничивается механическими напряжениями, нагреванием катушек и магнитным насыщением сердечника.

Ряд гигантских электромагнитов (без сердечника) с водяным охлаждением, и установок для создания импульсных магнитных полей был сконструирован П.Л. Капицей в Кембридже и в Институте физических проблем АН СССР, а также Ф. Биттером в Массачусетском технологическом институте. На таких магнитах удавалось достичь индукции до 50 Тл. Сравнительно небольшой электромагнит, создающий поля до 6,2 Тл, потребляющий электрическую мощность 15 кВт и охлаждаемый жидким водородом, был разработан в Лосаламосской национальной лаборатории. Подобные магнитные поля получают при очень низких температурах.

Вектор магнитной индукции считается одной из физических величин, которая является фундаментальной в теории электромагнетизма, его можно встретить в огромном множестве уравнений, в каких-то случаях непосредственно, а иногда через напряженность магнитного поля, связанную с ним. Еединственной областью в классической теории электромагнетизма, в которой отсутствует вектор магнитной индукции, является, пожалуй, только чистая электростатика.

Ампер в 1825 г. предположил, что в магните в каждом его атоме циркулируют электрические микротоки. Но электрон был открыт лишь в 1897 г., а модель внутренней структуры атома - в 1913 г., почти 100 лет после гениальной догадки Ампера. В 1852 г. В. Вебер предположил, что каждый атом магнитного вещества представляет собой крошечный магнитный диполь. Предельная или полная намагниченность вещества достигается тогда, когда все отдельные атомные магнитики оказываются выстроенными в определенном порядке. Вебер полагал, что сохранять свое упорядочение этим элементарным магнитам помогает молекулярное или атомное «трение». Его теория объясняла намагничивание тел при их соприкосновении с магнитом и их размагничивание при ударе или нагреве. Объяснялось и «размножение» магнитов при разрезании намагниченного куска или магнитного стержня на части, когда у каждой части всегда появлялось два полюса. Однако эта теория не объясняла ни происхождения самих элементарных магнитов, ни явление гистерезиса. В 1890 г. теория Вебера была усвершенствована Дж. Эвингом, заменившим гипотезу атомного трения идеей межатомных ограничивающих сил, помогающих поддерживать упорядочение элементарных диполей, которые и составляют постоянный магнит.

В 1905 г. П. Ланжевен объяснил поведение парамагнитных материалов, приписав каждому атому внутренний нескомпенсированный электронный ток. Согласно Ланжевену, именно эти токи образуют крошечные магниты, хаотически ориентированные, когда внешнее магнитное поле отсутствует, но приобретающие упорядоченную ориентацию после его приложения. При этом приближение к полной упорядоченности соответствует насыщению намагниченности. Ланжевен ввел понятие магнитного момента атомного магнита, равное произведению «магнитного заряда» на расстояние между полюсами. Согласно этой теории, слабый магнетизм парамагнитных материалов объясняется слабым суммарным магнитным моментом, создаваемым нескомпенсированными электронными токами.

В 1907 г. П. Вейс ввел понятие «домена», ставшее важным вкладом в современную теорию магнетизма. Отдельный домен может иметь линейные размеры порядка 0,01 мм. Домены разделены между собой так называемыми блоховскими стенками, толщина которых не превышает 1000 атомных размеров. Такие стенки представляют собой «переходные слои», или микроградиенты в магнитной наноструктуре вещества, в которых происходит изменение направления намагниченности доменов. Имеются два убедительных экспериментальных подтверждения существования доменов. В 1919 г. Г. Баркгаузен установил, что при наложении внешнего поля на образец из ферромагнитного материала его намагниченность изменяется небольшими дискретными порциями. Для выявления доменной структуры магнита методом порошковых фигур, на хорошо отполированную поверхность намагниченного материала наносят каплю коллоидной суспензии ферромагнитного порошка (окись железа). Частицы порошка оседают в основном в местах максимальной неоднородности магнитного поля - на границах доменов. Такую структуру можно изучать под микроскопом. Разработан метод изучения магнитного поля, основанный на прохождении поляризованного света сквозь прозрачный ферромагнитный материал.

В свободном атоме железа две его оболочки (K и L ), ближайшие к ядру, заполнены электронами, причем на первой из них размещены два, а на второй - восемь электронов. В K -оболочке спин одного из электронов положителен, а другого - отрицателен. В L -оболочке (точнее, в двух ее подоболочках) у четырех из восьми электронов положительные, а у других четырех - отрицательные спины. В обоих случаях спины электронов в пределах одной оболочки полностью компенсируются, так что полный магнитный момент атома равен нулю. В M -оболочке ситуация иная, поскольку из шести электронов, находящихся в третьей подоболочке, пять электронов имеют спины, направление

Подобно тому, как покоящийся электрический заряд действует на другой заряд посредством электрического поля, электрический ток действует на другой ток посредством магнитного поля . Действие магнитного поля на постоянные магниты сводится к действию его на заряды, движущиеся в атомах вещества и создающие микроскопические круговые токи.

Учение об электромагнетизме основано на двух положениях:

  • магнитное поле действует на движущиеся заряды и токи;
  • магнитное поле возникает вокруг токов и движущихся зарядов.

Взаимодействие магнитов

Постоянный магнит (или магнитная стрелка) ориентируется вдоль магнитного меридиана Земли. Тот его конец, который указывает на север, называется северным полюсом (N), а противоположный конец - южным полюсом (S). Приближая два магнита друг к другу, заметим, что одноименные их полюсы отталкиваются, а разноименные - притягиваются (рис. 1 ).

Если разделить полюса, разрезав постоянный магнит на две части, то мы обнаружим, что каждая из них тоже будет иметь два полюса , т. е. будет постоянным магнитом (рис. 2 ). Оба полюса - северный и южный, - неотделимые друг от друга, равноправны.

Магнитное поле, создаваемое Землей или постоянными магнитами, изображается, подобно электрическому полю, магнитными силовыми линиями. Картину силовых линий магнитного поля какого-либо магнита можно получить, помещая над ним лист бумаги, на котором насыпаны равномерным слоем железные опилки. Попадая в магнитное поле, опилки намагничиваются - у каждой из них появляется северный и южный полюсы. Противоположные полюсы стремятся сблизиться друг с другом, но этому мешает трение опилок о бумагу. Если постучать по бумаге пальцем, трение уменьшится и опилки притянутся друг к другу, образуя цепочки, изображающие линии магнитного поля.

На рис. 3 показано расположение в поле прямого магнита опилок и маленьких магнитных стрелок, указывающих направление линий магнитного поля. За это направление принято направление северного полюса магнитной стрелки.

Опыт Эрстэда. Магнитное поле тока

В начале XIX в. датский ученый Эрстэд сделал важное открытие, обнаружив действие электрического тока на постоянные магниты . Он поместил длинный провод вблизи магнитной стрелки. При пропускании по проводу тока стрелка поворачивалась, стремясь расположиться перпендикулярно ему (рис. 4 ). Это можно было объяснить возникновением вокруг проводника магнитного поля.

Магнитные силовые линии поля, созданного прямым проводником с током, представляют собой концентрические окружности, расположенные в перпендикулярной к нему плоскости, с центрами в точке, через которую проходит ток (рис. 5 ). Направление линий определяется правилом правого винта:

Если винт вращать по направлению линий поля, он будет двигаться в направлении тока в проводнике .

Силовой характеристикой магнитного поля является вектор магнитной индукции B . В каждой точке он направлен по касательной к линии поля. Линии электрического поля начинаются на положительных зарядах и оканчиваются на отрицательных, а сила, действующая в этом поле на заряд, направлена по касательной к линии в каждой ее точке. В отличие от электрического, линии магнитного поля замкнуты, что связано с отсутствием в природе «магнитных зарядов».

Магнитное поле тока принципиально ничем не отличается от поля, созданного постоянным магнитом. В этом смысле аналогом плоского магнита является длинный соленоид - катушка из провода, длина которой значительно больше ее диаметра. Схема линий созданного им магнитного поля, изображенная на рис. 6 , аналогична таковой для плоского магнита (рис. 3 ). Кружочками обозначены сечения провода, образующего обмотку соленоида. Токи, текущие по проводу от наблюдателя, обозначены крестиками, а токи противоположного направления - к наблюдателю - обозначены точками. Такие же обозначения приняты и для линий магнитного поля, когда они перпендикулярны плоскости чертежа (рис. 7 а, б).

Направление тока в обмотке соленоида и направление линий магнитного поля внутри него также связаны правилом правого винта, которое в этом случае формулируется так:

Если смотреть вдоль оси соленоида, то текущий по направлению часовой стрелки ток создает в нем магнитное поле, направление которого совпадает с направлением движения правого винта (рис. 8 )

Исходя из этого правила, легко сообразить, что у соленоида, изображенного на рис. 6 , северным полюсом служит правый его конец, а южным - левый.

Магнитное поле внутри соленоида является однородным - вектор магнитной индукции имеет там постоянное значение (B = const). В этом отношении соленоид подобен плоскому конденсатору, внутри которого создается однородное электрическое поле.

Сила, действующая в магнитном поле на проводник с током

Опытным путем было установлено, что на проводник с током в магнитном поле действует сила. В однородном поле прямолинейный проводник длиной l, по которому течет ток I, расположенный перпендикулярно вектору поля B, испытывает действие силы: F = I l B .

Направление силы определяется правилом левой руки :

Если четыре вытянутых пальца левой руки расположить по направлению тока в проводнике, а ладонь - перпендикулярно вектору B, то отставленный большой палец укажет направление силы, действующей на проводник (рис. 9 ).

Следует отметить, что сила, действующая на проводник с током в магнитном поле, направлена не по касательной к его силовым линиям, подобно электрической силе, а перпендикулярна им. На проводник, расположенный вдоль силовых линий, магнитная сила не действует.

Уравнение F = IlB позволяет дать количественную характеристику индукции магнитного поля.

Отношение не зависит от свойств проводника и характеризует само магнитное поле.

Модуль вектора магнитной индукции B численно равен силе, действующей на расположенный перпендикулярно к нему проводник единичной длины, по которому течет ток силой один ампер.

В системе СИ единицей индукции магнитного поля служит тесла (Тл):

Магнитное поле. Таблицы, схемы, формулы

(Взаимодействие магнитов, опыт Эрстеда, вектор магнитной индукции, направление вектора, принцип суперпозиции. Графическое изображение магнитных полей, линии магнитной индукции. Магнитный поток, энергетическая характеристика поля. Магнитные силы, сила Ампера, сила Лоренца. Движение заряженных частиц в магнитном поле. Магнитные свойства вещества, гипотеза Ампера)

Магнитное поле – особая форма материи, существующая вокруг движущихся электрических зарядов – токов.

Источниками магнитного поля являются постоянные магниты, проводники с током. Обнаружить магнитное поле можно по действию на магнитную стрелку, проводник с током и движущиеся заряженные частицы.

Для исследования магнитного поля используют замкнутый плоский контур с током (рамку с током).

Впервые поворот магнитной стрелки около проводника, по которому протекает ток, обнаружил в 1820 году Эрстед. Ампер наблюдал взаимодействие проводников, по которым протекал ток: если токи в проводниках текут в одном направлении, то проводники притягиваются, если токи в проводниках текут в противоположных направлениях, то они отталкиваются.

Свойства магнитного поля:

  • магнитное поле материально;
  • источник и индикатор поля – электрический ток;
  • магнитное поле является вихревым – его силовые линии (линии магнитной индукции) замкнутые;
  • величина поля убывает с расстоянием от источника поля.

Важно!
Магнитное поле не является потенциальным. Его работа на замкнутой траектории может быть не равна нулю.

Магнитным взаимодействием называют притяжение или отталкивание электрически нейтральных проводников при пропускании через них электрического тока.

Магнитное взаимодействие движущихся электрических зарядов объясняется так: всякий движущийся электрический заряд создает в пространстве магнитное поле, которое действует на движущиеся заряженные частицы.

Силовая характеристика магнитного поля – вектор магнитной индукции ​\(\vec{B} \) ​. Модуль вектора магнитной индукции равен отношению максимального значения силы, действующей со стороны магнитного поля на проводник с током, к силе тока в проводнике ​\(I \) ​ и его длине ​\(l \) ​:

Обозначение – \(\vec{B} \) , единица измерения в СИ – тесла (Тл).

1 Тл – это индукция такого магнитного поля, в котором на каждый метр длины проводника при силе тока 1 А действует максимальная сила 1 Н.

Направление вектора магнитной индукции совпадает с направлением от южного полюса к северному полюсу магнитной стрелки (направление, которое указывает северный полюс магнитной стрелки), свободно установившейся в магнитном поле.

Направление вектора магнитной индукции можно определить по правилу буравчика :

если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.

Для определения магнитной индукции нескольких полей используется принцип суперпозиции :

магнитная индукция результирующего поля, созданного несколькими источниками, равна векторной сумме магнитных индукций полей, создаваемых каждым источником в отдельности:

Поле, в каждой точке которого вектор магнитной индукции одинаков по величине и направлению, называется однородным .

Наглядно магнитное поле изображают в виде магнитных линий или линий магнитной индукции. Линия магнитной индукции – это воображаемая линия, в любой точке которой вектор магнитной индукции направлен по касательной к ней.

Свойства магнитных линий:

  • магнитные линии непрерывны;
  • магнитные линии замкнуты (т.е. в природе не существует магнитных зарядов, аналогичных электрическим зарядам);
  • магнитные линии имеют направление, связанное с направлением тока.

Густота расположения позволяет судить о величине поля: чем гуще расположены линии, тем сильнее поле.

На плоский замкнутый контур с током, помещенный в однородное магнитное поле, действует момент сил ​\(M \) ​:

где ​\(I \) ​ – сила тока в проводнике, ​\(S \) ​ – площадь поверхности, охватываемая контуром, ​\(B \) ​ – модуль вектора магнитной индукции, ​\(\alpha \) ​ – угол между перпендикуляром к плоскости контура и вектором магнитной индукции.

Тогда для модуля вектора магнитной индукции можно записать формулу:

где максимальный момент сил соответствует углу ​\(\alpha \) ​ = 90°.

В этом случае линии магнитной индукции лежат в плоскости рамки, и ее положение равновесия является неустойчивым. Устойчивым будет положение рамки с током в случае, когда плоскость рамки перпендикулярна линиям магнитной индукции.

Постоянные магниты – это тела, длительное время сохраняющие намагниченность, то есть создающие магнитное поле.

Основное свойство магнитов: притягивать тела из железа или его сплавов (например стали). Магниты бывают естественные (из магнитного железняка) и искусственные, представляющие собой намагниченные железные полосы. Области магнита, где его магнитные свойства выражены наиболее сильно, называют полюсами. У магнита два полюса: северный ​\(N \) ​ и южный ​\(S \) ​.

Важно!
Вне магнита магнитные линии выходят из северного полюса и входят в южный полюс.

Разделить полюса магнита нельзя.

Объяснил существование магнитного поля у постоянных магнитов Ампер. Согласно его гипотезе внутри молекул, из которых состоит магнит, циркулируют элементарные электрические токи. Если эти токи ориентированы определенным образом, то их действия складываются и тело проявляет магнитные свойства. Если эти токи расположены беспорядочно, то их действие взаимно компенсируется и тело не проявляет магнитных свойств.

Магниты взаимодействуют: одноименные магнитные полюса отталкиваются, разноименные – притягиваются.

Магнитное поле проводника с током

Электрический ток, протекающий по проводнику с током, создает в окружающем его пространстве магнитное поле. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле.

Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.

Направление линий магнитного поля вокруг проводника с током всегда находится в строгом соответствии с направлением тока, проходящего по проводнику.

Направление магнитных силовых линий можно определить по правилу буравчика : если поступательное движение буравчика (1) совпадает с направлением тока (2) в проводнике, то вращение его рукоятки укажет направление силовых линий (4) магнитного поля вокруг проводника.

При изменении направления тока линии магнитного поля также изменяют свое направление.

По мере удаления от проводника магнитные силовые линии располагаются реже. Следовательно, индукция магнитного поля уменьшается.

Направление тока в проводнике принято изображать точкой, если ток идет к нам, и крестиком, если ток направлен от нас.

Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют катушкой.

В проводнике, согнутом в виде витка, магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается.

Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле. Магнитное поле снаружи катушки также складывается из магнитных полей отдельных витков, однако магнитные силовые линии располагаются не так густо, вследствие чего интенсивность магнитного поля там не столь велика, как внутри катушки.

Магнитное поле катушки с током имеет такую же форму, как и поле прямолинейного постоянного магнита: силовые магнитные линии выходят из одного конца катушки и входят в другой ее конец. Поэтому катушка с током представляет собой искусственный электрический магнит. Обычно для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такую катушку называют электромагнитом .

Направление линий магнитной индукции катушки с током находят по правилу правой руки :

если мысленно обхватить катушку с током ладонью правой руки так, чтобы четыре пальца указывали направление тока в ее витках, тогда большой палец укажет направление вектора магнитной индукции.

Для определения направления линий магнитного поля, создаваемого витком или катушкой, можно использовать также правило буравчика :

если вращать ручку буравчика по направлению тока в витке или катушке, то поступательное движение буравчика укажет направление вектора магнитной индукции.

Электромагниты нашли чрезвычайно широкое применение в технике. Полярность электромагнита (направление магнитного поля) можно определить и с помощью правила правой руки.

Сила Ампера

Сила Ампера – сила, которая действует на проводник с током, находящийся в магнитном поле.

Закон Ампера: на проводник c током силой ​\(I \) ​ длиной ​\(l \) ​, помещенный в магнитное поле с индукцией ​\(\vec{B} \) ​, действует сила, модуль которой равен:

где ​\(\alpha \) ​ – угол между проводником с током и вектором магнитной индукции ​\(\vec{B} \) ​.

Направление силы Ампера определяют по правилу левой руки : если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​\(B_\perp \) ​ входила в ладонь, а четыре вытянутых пальца указывали направление тока в проводнике, то отогнутый на 90° большой палец покажет направление силы Ампера.

Сила Ампера не является центральной. Она направлена перпендикулярно линиям магнитной индукции.

Сила Ампера широко используется. В технических устройствах создают магнитное поле с помощью проводников, по которым течет электрический ток. Электромагниты используют в электромеханическом реле для дистанционного выключения электрических цепей, магнитном подъемном кране, жестком диске компьютера, записывающей головке видеомагнитофона, в кинескопе телевизора, мониторе компьютера. В быту, на транспорте и в промышленности широко применяют электрические двигатели. Взаимодействие электромагнита с полем постоянного магнита позволило создать электроизмерительные приборы (амперметр, вольтметр).

Простейшей моделью электродвигателя служит рамка с током, помещенная в магнитное поле постоянного магнита. В реальных электродвигателях вместо постоянных магнитов используют электромагниты, вместо рамки – обмотки с большим числом витков провода.

Коэффициент полезного действия электродвигателя:

где ​\(N \) ​ – механическая мощность, развиваемая двигателем.

Коэффициент полезного действия электродвигателя очень высок.

Алгоритм решения задач о действии магнитного поля на проводники с током:

  • сделать схематический чертеж, на котором указать проводник или контур с током и направление силовых линий поля;
  • отметить углы между направлением поля и отдельными элементами контура;
  • используя правило левой руки, определить направление силы Ампера, действующей на проводник с током или на каждый элемент контура, и показать эти силы на чертеже;
  • указать все остальные силы, действующие на проводник или контур;
  • записать формулы для остальных сил, упоминаемых в задаче. Выразить силы через величины, от которых они зависят. Если проводник находится в равновесии, то необходимо записать условие его равновесия (равенство нулю суммы сил и моментов сил);
  • записать второй закон Ньютона в векторном виде и в проекциях;
  • решение проверить.

Сила Лоренца

Сила Лоренца – сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.

Формула для нахождения силы Лоренца:

где ​\(q \) ​ – заряд частицы, ​\(v \) ​ – скорость частицы, ​\(B \) ​ – модуль вектора магнитной индукции, ​\(\alpha \) ​ – угол между вектором скорости частицы и вектором магнитной индукции.

Направление силы Лоренца определяют по правилу левой руки : если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции ​\(B_\perp \) ​ входила в ладонь, а четыре вытянутых пальца указывали направление скорости положительно заряженной частицы, то отогнутый на 90° большой палец покажет направление силы Лоренца.

Если заряд частицы отрицательный, то направление силы изменяется на противоположное.

Важно!
Если вектор скорости сонаправлен с вектором магнитной индукции, то частица движется равномерно и прямолинейно.

В однородном магнитном поле сила Лоренца искривляет траекторию движения частицы.

Если вектор скорости перпендикулярен вектору магнитной индукции, то частица движется по окружности, радиус которой равен:

где ​\(m \) ​ – масса частицы, ​\(v \) ​ – скорость частицы, ​\(B \) ​ – модуль вектора магнитной индукции, ​\(q \) ​ – заряд частицы.

В этом случае сила Лоренца играет роль центростремительной и ее работа равна нулю. Период (частота) обращения частицы не зависит от радиуса окружности и скорости частицы. Формула для вычисления периода обращения частицы:

Угловая скорость движения заряженной частицы:

Важно!
Сила Лоренца не меняет кинетическую энергию частицы и модуль ее скорости. Под действием силы Лоренца изменяется направление скорости частицы .

Если вектор скорости направлен под углом ​\(\alpha \) ​ (0° < \(\alpha \) < 90°) к вектору магнитной индукции, то частица движется по винтовой линии.

В этом случае вектор скорости частицы можно представить как сумму двух векторов скорости, один из которых, ​\(\vec{v}_2 \) ​, параллелен вектору \(\vec{B} \) , а другой, \(\vec{v}_1 \) , – перпендикулярен ему. Вектор \(\vec{v}_1 \) не меняется ни по модулю, ни по направлению. Вектор \(\vec{v}_2 \) меняется по направлению. Сила Лоренца будет сообщать движущейся частице ускорение, перпендикулярное вектору скорости \(\vec{v}_1 \) . Частица будет двигаться по окружности. Период обращения частицы по окружности – ​\(T \) ​.

Таким образом, на равномерное движение вдоль линии индукции будет накладываться движение по окружности в плоскости, перпендикулярной вектору \(\vec{B} \) . Частица движется по винтовой линии с шагом ​\(h=v_2T \) ​.

Важно!
Если частица движется в электрическом и магнитном полях, то полная сила Лоренца равна:

Особенности движения заряженной частицы в магнитном поле используются в масс-спектрометрах – устройствах для измерения масс заряженных частиц; ускорителях частиц; для термоизоляции плазмы в установках «Токамак».

Алгоритм решения задач о действии магнитного (и электрического) поля на заряженные частицы:

  • сделать чертеж, указать на нем силовые линии магнитного (и электрического) поля, нарисовать вектор начальной скорости частицы и отметить знак ее заряда;
  • изобразить силы, действующие на заряженную частицу;
  • определить вид траектории частицы;
  • разложить силы, действующие на заряженную частицу, вдоль направления магнитного поля и по направлению, ему перпендикулярному;
  • составить основное уравнение динамики материальной точки по каждому из направлений разложения сил;
  • выразить силы через величины, от которых они зависят;
  • решить полученную систему уравнений относительно неизвестной величины;
  • решение проверить.

Основные формулы раздела «Магнитное поле»



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Красивоцветущие. Плодово-ягодные. Декоративно-лиственные