Красивоцветущие. Плодово-ягодные. Декоративно-лиственные

Химический элемент I группы периодической системы, атомный номер 55, атомная масса 132,9054; относится к щелочным металлам.

История открытия

Открыт цезий сравнительно недавно, в 1860 г., в минеральных водах известных целебных источников Шварцвальда (Баден-Баден и др.). За короткий исторический срок прошел блистательный путь – от редкого, никому не ведомого химического элемента до стратегического металла. Принадлежит к семье редких щелочных легких металлов. Легко взаимодействует с другими элементами, образуя прочные связи. В настоящее время применяется одновременно в нескольких отраслях: в электронике и автоматике, в радиолокации и кино, в атомных реакторах и на космических кораблях.

Впервые он был обнаружен по двум ярким линиям в синей области спектра, и латинское слово «caesius», от которого произошло его название, означает небесно-голубой. Неоспоримо утверждение о том, что цезий практически последний в ряду щелочных металлов. Правда, еще Менделеев предусмотрительно оставил в своей таблице пустую клетку для «экацезия», который должен был следовать в I группе за цезием. И этот элемент (франций) в 1939 г. был открыт. Однако франций существует лишь в виде быстро распадающихся радиоактивных изотопов с периодами полураспада в несколько минут, секунд или даже тысячных долей секунды.

Цезий был первым элементом, открытым с помощью спектрального анализа. Ранее соли цезия ошибочно считали солями калия. Ученые, однако, имели возможность познакомиться с этим элементом еще до того, как Бунзен и Кирхгоф создали новый исследовательский метод. Речь идет о пропаже, которая долгие годы не давала покоя химикам. Еще в 1846 году немецкий ученый К. Платтнер занялся исследованием полуцита-минерала, найденного на острове Эльба. Выполнить полный химический анализ минерала было делом не хитрым, но вот загвоздка: как ни складывал Платтнер полученные им результаты, сумма всех составляющих оказывалась равной 93%. Куда же могли подеваться остальные 7%? Почти два десятка лет никто не мог ответить на этот вопрос. И лишь в 1864 году итальянец Пизани представил неопровержимые доказательства того, что виновником «недовеса» был цезий, ошибочно принятый Платтнером за калий – эти элементы состоят в довольно близком химическом родстве, однако цезий в два с лишним раза тяжелее.

Металлический цезий впервые был получен Сеттербергом в 1882 г. электролизом расплавленного цианида цезия. Производство соединений цезия возникло в конце прошлого столетия, а производство металлов цезия было организовано в двадцатых годах прошлого столетия. Однако и в настоящее время их получают в ограниченном количестве.

Описание

Блестящая поверхность металлического цезия имеет бледно-золотистый цвет. Это – один из самых легкоплавких металлов: он плавится при 28,5 °C, кипит при 705 °C в обычных условиях и при 330 °C в вакууме. Легкоплавкость цезия сочетается с большой легкостью. Несмотря на довольно большую атомную массу (132,905) элемента, его плотность при 20 °C всего 1,87. Цезий во много раз легче своих соседей по менделеевской таблице. Лантан, например, имеющий почти такую же атомную массу, по плотности превосходит цезий в три с лишним раза. Цезий всего вдвое тяжелее натрия, а их атомные массы относятся, как 6:1. По-видимому, причина этого кроется в своеобразной электронной структуре атомов цезия. Каждый его атом содержит 55 протонов, 78 нейтронов и 55 электронов, но все эти многочисленные электроны расположены относительно рыхло – ионный радиус цезия очень велик – 1,65 Ǻ*. Ионный радиус лантана, например, равен всего 1,22 Ǻ, хотя в состав его атома входят 57 протонов, 82 нейтрона и 57 электронов. Атомный радиус цезия равен 2,62 Ǻ.

Природный цезий состоит из стабильного нуклида 133 Cs. Поперечное сечение захвата тепловых нейтронов 2,9*10 -27 м 2 .
Конфигурация внешней электронной оболочки атома 6s 1 , степень окисления +1; энергия ионизации при переходе Cs →Cs + →Cs 2+ соответствует 3,89397, 25,1 эВ; сродство к электрону 0,47 эВ; электроотрицательность по Полингу 0,7; работа
выхода электрона 1,81 эВ; металлический радиус 0,266 нм, ковалентный радиус 0.235 нм, ионный радиус Cs + 0,181 нм (координационное число 6), 0,188 нм (8), 0,192 нм (9), 0,195 нм (10), 0,202 нм (12).

Содержание цезия в земной коре 3,7·10 -4 % по массе. Минералы цезия – поллуцит (Сs, Nа) [АlSi 2 O 6 ] ·Н 2 О (содержание Cs 2 О 29,8–36,7% по массе) и редкий авогадрит (К, Сs) [ВF 4 ]. Цезий присутствует в виде примеси в богатых калием алюмосиликатах: лепидолите (0,1–0,5% СsО), флогопите (0,2–1,5%) и др., также в карналлите (0,0003–0,002% CsС1), трифилине, в термальных (до 5 мг/л Cs) и озерных (до 0,3 мг/л Cs) водах. Промышленный источники цезия – поллуцит и лепидолит.

Свойства цезия

Цезий – мягкий металл, который при комнатной температуре находится в полужидком состоянии. Пары окрашены в зеленовато-синий цвет. Кристаллизуется в кубической объемноцентрированной решетке: а = 0,6141 нм, z = 2, пространств, группа IтЗт\ т. пл. 28,44 °С, точка кипения 669,2 °С; плотность 1,904 г./см 3 (20 °С); С 0 р 32,21 Дж/(моль·К); Н 0 пл 2,096 кДж/моль, ∆Н 0 исп 65,62 кДж/моль, ∆Н 0 возг 76,54 кДж/моль (298,15 К); S 0 298 85,23 Дж/(моль·К); уравнения температурной зависимости давления пара: lg p (мм рт. ст.) = -4122/T + 5,228 – 1,514 lg T + 3977Т (100–301,59К), lg p (мм. рт. cт.)= -3822/Т + 4,940 – 0,746 lg T (301,59–897 К); теплопроводность, Вт/(м·К): 19,0 (298 К), 19,3 (373 К), 20,2 (473 К); ρ, мкОм·м: 0,1830 (273,15 К), 0,2142 (301,59 К, твердый), 0,3568 (301,59 К, жидкость), температурный коэффициент ρ 6,0–10 -3 К -1 (273–291 К); парамагнетик, удельная магнитная восприимчивость +0,22·10 -9 (293 К); η, мПа·с: 6,76 (301,59 К), 5,27 (350 К), 3,18 (500 К); γ 60,6 мН/м (301,59 К); температурный коэффициент линейного расширения 97·10 -6 К -1 (273 К); твердость по Моосу 0,2; модуль упругости 1,7 ГПа (293 К); коэффициент. сжимаемости 71·10 -11 Па -1 (323 К).

На воздухе цезий мгновенно окисляется с воспламенением и образованием перекиси и надперекиси. С водой цезий и рубидий бурно реагируют с образованием гидроокисей и выделением водорода. Эта реакция протекает даже при температуре –100° С.

Цезий растворяется в жидком аммиаке, со спиртом образуют алкоголяты, способные присоединить одну молекулу спирта. Из-за высокой реакционной способности цезий хранят в герметических стальных сосудах под слоем парафина.

Цезий, как натрий и калий, обладает единственным 5-электроном сверх конфигурации инертных газов. Структура электронных оболочек цезия определяет многие его физико-химические свойства. Конфигурация электронных оболочек следующая: КЬ – [Кг] криптон. 5s и Сз – [Хе] ксенон 6s. Вследствие небольшой разницы в энергиях атомных орбит – 5d и 6s для цезия атомы их легко возбуждаются. По этой причине металлы обладают низкими значениями ионизационных потенциалов, хорошей электропроводностью и явлением фотоэффекта. Способность световых лучей заряжать тела положительным электричеством или отнимать от них отрицательный заряд была названа фотоэффектом (от греческого слова «фотос» – свет и латинского – «эффект» – действие). Световые лучи «выбивают» из цезия электроны, которые образуют электрический ток. У цезия очень легко «выбить» электрон, так как на внешнем электронном слое он один. Чем дальше от ядра атома удален электрон, тем легче его оторвать. Так, у цезия шесть электронных слоев, а у натрия только три; между ядром и внешним электроном у цезия 54 электрона, а у натрия только 10. Следовательно, цезий легче всего отдает свой электрон, потому что он обладает наибольшим атомным радиусом и наименьшим ионизационным потенциалом. Цезий встречается в природе только в виде стабильного изотопа 135 Сз

Самое замечательное свойство цезия – его исключительно высокая активность. По чувствительности к свету он превосходит все другие металлы. Цезиевый катод испускает поток электронов даже под действием инфракрасных лучей с длиной волны 0,80 мкм. Кроме того, максимальная электронная эмиссия, превосходящая нормальный фотоэлектрический эффект в сотни раз, наступает у цезия при освещении зеленым светом, тогда как у других светочувствительных металлов этот максимум проявляется лишь при воздействии фиолетовых или ультрафиолетовых лучей.

Долгое время ученые надеялись найти радиоактивные изотопы цезия в природе, поскольку они есть у рубидия и калия. Но в природном цезии не удалось обнаружить каких-либо иных изотопов, кроме вполне стабильного 133 Cs. Правда, искусственным путем получено 22 радиоактивных изотопа цезия с атомными массами от 123 до 144. В большинстве случаев они недолговечны: периоды полураспада измеряются секундами и минутами, реже – несколькими часами или днями. Однако три из них распадаются не столь быстро – это 134 Cs, 137 Cs и 135 Cs, живущие 2,07; 26,6 и 3·10 6 лет. Все три изотопа образуются в атомных реакторах при распаде урана, тория и плутония; их удаление из реакторов довольно затруднительно.

Химическая активность цезия необычайна. Он очень быстро реагирует с кислородом и не только моментально воспламеняется на воздухе, но способен поглощать малейшие следы кислорода в условиях глубокого вакуума. Воду он бурно разлагает уже при обычной температуре; при этом выделяется много тепла, и вытесняемый из воды водород тут же воспламеняется. Цезий взаимодействует даже со льдом при –116 °C. Его хранение требует большой предосторожности.

Цезий взаимодействует и с углеродом. Только самая совершенная модификация углерода – алмаз – в состоянии противостоять его «натиску». Жидкий расплавленный цезий и его пары разрыхляют сажу, древесный уголь и даже графит, внедряясь между атомами углерода и образуя своеобразные, довольно прочные соединения золотисто-желтого цвета, которые в пределе, по-видимому, отвечают составу C 8 Cs 5 . Они воспламеняются на воздухе, вытесняют водород из воды, а при нагревании разлагаются и отдают весь поглощенный цезий.

Даже при обычной температуре реакции цезия с фтором, хлором и другими галогенами сопровождаются воспламенением, а с серой и фосфором – взрывом. При нагревании цезий соединяется с водородом, азотом и другими элементами, а при 300 °C разрушает стекло и фарфор. Гидриды и дейтериды цезия легко воспламеняются на воздухе, а также в атмосфере фтора и хлора. Неустойчивы, а иногда огнеопасны и взрывчаты соединения цезия с азотом, бором, кремнием и германием, а также с окисью углерода. Галоидные соединения цезия и цезиевые соли большинства кислот, напротив, очень прочны и устойчивы. Активность исходного цезия проявляется у них разве только в хорошей растворимости подавляющего большинства солей. Кроме того, они легко превращаются в более сложные комплексные соединения.

Цезий входит в группу химических элементов с ограниченными запасамивместе с гафнием, танталом, бериллием, рением, металлами платиновой группы, кадмием, теллуром. Общие выявленные мировые ресурсы руд составляют около 180 тыс. тонн (в пересчёте на окись цезия), но они крайне распылены. Сверхвысокие цены — это неотъемлемая черта, сопровождающая цезий и рубидий в прошлом и настоящем. Мировой объём добычи цезия составляет около 9 тонн в год, а потребность свыше 85 тонн в год и она постоянно растёт. У цезия есть и недостатки, которые обусловливают постоянный поиск его минералов: извлечение этого металла из руд неполное, в процессе эксплуатации материала он рассеивается и потому безвозвратно теряется, запасы цезиевых руд очень ограничены и не могут обеспечить постоянно растущий спрос на металлический цезий (потребности в металле более чем в 8,5 раз превышают его добычу, и положение в металлургии цезия ещё более тревожное, чем, например, в металлургии тантала или рения). Промышленность нуждается именно в очень чистом материале (на уровне 99,9—99,999 %), и это является одной из труднейших задач в металлургии редких элементов. Для получения цезия достаточной степени чистоты требуется многократная ректификация в вакууме, очистка от механических примесей на металлокерамических фильтрах, нагревание с геттерами для удаления следов водорода, азота, кислорода и многократная ступенчатая кристаллизация. Цезий весьма активен и агрессивен по отношению к контейнерным материалам и требует хранения, например, в сосудах из специального стекла в атмосфере аргона или водорода (обычные марки лабораторного стекла цезий разрушает).

Месторождения

По добыче цезиевой руды (поллуцита) лидирует Канада. В месторождении Берник-Лейк (юго-восточная Манитоба) сосредоточено около 70 % мировых запасов цезия. Поллуцит также добывается в Намибии и Зимбабве. В России его мощные месторождения находятся на Кольском полуострове, в Восточном Саяне и Забайкалье. Месторождения поллуцита также имеются в Казахстане, Монголии и Италии (о. Эльба), но они обладают малыми запасами и не имеют важного экономического значения.

Ежегодное производство цезия в мире составляет около 20 тонн.

Геохимия и минералогия

Среднее содержание цезия в земной коре 3,7 г/т. Наблюдается некоторое увеличение содержание цезия от ультраосновных пород (0,1 г/т) к кислым (5 г/т). Основная его масса в природе находится в рассеянной форме и лишь незначительная часть заключена в собственных минералах. Постоянно повышенные количества цезия наблюдаются в воробьевите (1—4 %), родиците (около 5 %), авогадрите и лепидолите (0,85 %). По кристаллохимическим свойствам цезий наиболее близок к рубидию, калию и таллию. В повышенных количествах цезий находится в калиевых минералах. Цезий, как и рубидий, имеет тенденцию накапливаться на поздних стадиях магматических процессов, и в пегматитах его концентрации достигают наивысших значений. Среднее содержание цезия в гранитных пегматитах около 0,01 %, а в отдельных пегматитовых жилах, содержащих поллуцит, даже достигает 0,4 %, что примерно в 400 раз выше, чем в гранитах. Наиболее высокие концентрации цезия наблюдаются в редкометально замещённых микроклин-альбитовых пегматитах со сподуменом. При пневматолито-гидротермальном процессе повышенные количества цезия связанны с массивами грейзенезированных аляскитов и гранитов с кварц-берилл-вольфрамитовыми жилами, где он присутствует главным образом в мусковитах и полевых шпатах. В зоне гипергенеза (в поверхностных условиях) цезий в небольшом количестве накапливается в глинах, глинистых породах и почвах, содержащих глинистые минералы, иногда в гидроокислах марганца. Максимальное содержание цезия составляет лишь 15 г/т. Роль глинистых минералов сводится к сорбции, цезий вовлекается в межпакетное пространство в качестве поглощённого основания. Активная миграция этого элемента в водах очень ограничена. Основное количество цезия мигрирует «пассивно», в глинистых частичках речных вод. В морской воде концентрация цезия составляет ок. 0,5 мкг/л. Из числа собственно цезиевых минералов наиболее распространены поллуцит (Cs, Na)·nH2O (22 — 36 % Cs2O), цезиевый берилл (воробьевит) Be2CsAl2(Si6O18) и авогадрит (KCs)BF4. Последние два минерала содержат до 7,5 % окиси цезия.

Получение цезия

Основными цезиевыми минералами являются поллуцит и очень редкий авогадрит (K,Cs). Кроме того, в виде примесей цезий входит в ряд алюмосиликатов: лепидолит, флогопит, биотит, амазонит, петалит, берилл, циннвальдит, лейцит, карналлит. В качестве промышленного сырья используются поллуцит и лепидолит.
При промышленном получении цезий в виде соединений извлекается из минерала поллуцита. Это делается хлоридным или сульфатным вскрытием. Первое включает обработку исходного минерала подогретой соляной кислотой, добавление хлорида сурьмы SbCl3 для осаждения соединения Cs3 и промывку горячей водой или раствором аммиака с образованием хлорида цезия CsCl. При втором — минерал обрабатывается подогретой серной кислотой с образованием алюмоцезиевых квасцов CsAl(SO4)2 · 12H2O.
В России после распада СССР промышленная добыча поллуцита не велась, хотя в Вороньей тундре под Мурманском ещё в советское время были обнаружены колоссальные запасы минерала. К тому времени, когда российская промышленность смогла встать на ноги, выяснилось, что лицензию на разработку этого месторождения купила Канадская компания. В настоящее время переработка и извлечение солей цезия из поллуцита ведется в Новосибирске на ЗАО «Завод редких металлов».

Существует несколько лабораторных методов получения цезия. Он может быть получен:
нагревом в вакууме смеси хромата или дихромата цезия с цирконием;
разложением азида цезия в вакууме;
нагревом смеси хлорида цезия и специально подготовленного кальция.

Все методы являются трудоёмкими. Второй позволяет получить высокочистый металл, однако является взрывоопасным и требует на реализацию несколько суток.

Химические свойства

Цезий является наиболее химически активным металлом, полученным в макроскопических количествах (так как активность щелочных металлов растёт с порядковым номером, то франций, вероятно, ещё более активен, но в макроскопических количествах не получен, так как все его изотопы имеют малый период полураспада). Является сильнейшим восстановителем. На воздухе цезий мгновенно окисляется с воспламенением, образуя надпероксид CsO2. При ограниченном доступе кислорода окисляется до оксида Cs2O. Взаимодействие с водой происходит со взрывом, продуктом взаимодействия являются гидроксид CsOH и водород H2. Цезий вступает в реакцию со льдом (даже при −120 °C), простыми спиртами, галогеноорганическими соединениями, галогенидами тяжёлых металлов, кислотами, сухим льдом (взаимодействие протекает с сильным взрывом). Реагирует с бензолом. Активность цезия обусловлена не только высоким отрицательным электрохимическим потенциалом, но и невысокой температурой плавления и кипения (быстро развивается очень большая контактная поверхность, что увеличивает скорость реакции). Многие образуемые цезием соли — нитраты, хлориды, бромиды, фториды, иодиды, хроматы, манганаты, азиды, цианиды, карбонаты и т. д. — чрезвычайно легко растворимы в воде и ряде органических растворителей; наименее растворимы перхлораты (что важно для технологии получения и очистки цезия). Несмотря на то, что цезий является весьма активным металлом, он, в отличие от лития, не вступает в реакцию с азотом при обычных условиях и, в отличие от бария, кальция, магния и ряда других металлов, не способен образовать с азотом соединений даже при сильнейшем нагревании.

Гидроксид цезия — сильнейшее основание с высочайшей электропроводностью в водном растворе; так, например, при работе с ним необходимо учитывать, что концентрированный раствор CsOH разрушает стекло даже при обычной температуре, а расплав разрушает железо, кобальт, никель, а также платину, корунд и диоксид циркония, и даже постепенно разрушает серебро и золото (в присутствии кислорода — очень быстро). Единственным устойчивым в расплаве гидроксида цезия металлом является родий и некоторые его сплавы.

Если бы писателю-беллетристу пришлось заняться «биографией» цезия, то он, может быть, начал так: «Открыт цезий сравнительно недавно, в 1860 г., в минеральных водах известных целебных источников Шварцвальда (Баден-Баден и др.). За короткий исторический срок прошел блистательный путь – от редкого, никому не ведомого химического элемента до стратегического металла. Принадлежит к трудовой семье щелочных металлов, по в жилах его течет голубая кровь последнего в роде... Впрочем, это нисколько не мешает ему общаться с другими элементами и даже, если они не столь знамениты, он охотно вступает с ними в контакты и завязывает прочные связи. В настоящее время работает одновременно в нескольких отраслях: в электронике и автоматике, в радиолокации и кино, в атомных реакторах и на космических кораблях...».

Не принимая всерьез шутливого топа и некоторых явно литературных преувеличений, это жизнеописание можно смело принять за «роман без вранья». Не беспредметен разговор о «голубой крови» цезия – впервые он был обнаружен по двум ярким линиям в синей области спектра и латинское слово «caesius», от которого произошло его название, означает небесно-голубой. Неоспоримо утверждение о том, что цезий практически последний в ряду щелочных металлов. Правда, еще Менделеев предусмотрительно оставил в своей таблице пустую клетку для «экацезия», который должен был следовать в I группе за цезием. И этот элемент (франций) в 1939 г. был открыт. Однако франций существует лишь в виде быстро распадающихся радиоактивных изотопов с периодами полураспада в несколько минут, секунд или даже тысячных долей секунды. Наконец, правда и то, что цезий применяется в некоторых важнейших областях современной техники и науки.

Распространенность цезия в природе и его производство

В литературе нет точных данных о том, сколько цезия имеется на земном шаре. Известно лишь, что он относится к числу редких химических элементов. Полагают, что его содержание в земной коре во всяком случае в несколько сот раз меньше, чем рубидия, и не превышает 7·10 –4 %.

Цезий встречается в крайне рассеянном состоянии (порядка тысячных долей процента) во многих горных породах; ничтожные количества этого металла были обнаружены и в морской воде. В большей концентрации (до нескольких десятых процента) он содержится в некоторых калиевых и литиевых минералах, главным образом в лепидолите. Но особенно существенно то, что, в отличие от рубидия и большинства других редких элементов, цезий образует собственные минералы – поллуцит, авогадрит и родицит. Родицит крайне редок, притом некоторые авторы причисляют его к литиевым минералам, так как в его состав (R 2 O · 2Al 2 O 3 · 3B 2 O 3 , где R 2 O – сумма окисей щелочных металлов) входит обычно больше лития, чем цезия. Авогадрит (K, Cs) тоже редок, да и поллуциты встречаются нечасто; их залежи маломощны, зато цезия они содержат не менее 20, а иногда и до 35%. Наибольшее практическое значение имеют поллуциты США (Южная Дакота и Мэн), Юго-Западной Африки, Швеции и Советского Союза (Казахстан и др.).

Поллуциты – это алюмосиликаты, сложные и весьма прочные соединения. Их состав определяют формулой (Cs, Na) · n H 2 O, и хотя цезия в них много, извлечь его не так просто. Чтобы «вскрыть» минерал и перевести в растворимую форму ценные компоненты, его обрабатывают при нагревании концентрированными минеральными кислотами – плавиковой или соляной и серной. Затем освобождают раствор от всех тяжелых и легких металлов и, что особенно трудно, от постоянных спутников цезия – щелочных металлов: калия, натрия и рубидия.

Современные методы извлечения цезия из поллуцитов основаны на предварительном сплавлении концентратов с избытком извести и небольшим количеством плавикового шпата. Если вести процесс при 1200°C, то почти весь цезий возгоняется в виде окиси Cs 2 O. Этот возгон, конечно, загрязнен примесью других щелочных металлов, но он растворим в минеральных кислотах, что упрощает дальнейшие операции.

Из лепидолитов цезий извлекается вместе с рубидием попутно, как побочный продукт производства лития. Лепидолиты предварительно сплавляют (или спекают) при температуре около 1000°C с гипсом или сульфатом калия и карбонатом бария. В этих условиях все щелочные металлы превращаются в легкорастворимые соединения – их можно выщелачивать горячей водой. После выделения лития остается переработать полученные фильтраты, и здесь самая трудная операция – отделение цезия от рубидия и громадного избытка калия. В результате ее получают какую-либо соль цезия – хлорид, сульфат или карбонат. Но это еще только часть дела, так как цезиевую соль надо превратить в металлический цезий. Чтобы понять всю сложность последнего этапа, достаточно указать, что первооткрывателю цезия – крупнейшему немецкому химику Бунзену – так и не удалось получить элемент №55 в свободном состоянии. Все способы, пригодные для восстановления других металлов, не давали желаемых результатов. Металлический цезий был впервые получен только через 20 лет, в 1882 г., шведским химиком Сеттербергом в процессе электролиза расплавленной смеси цианидов цезия и бария, взятых в отношении 4:1. Цианид бария добавляли для снижения температуры плавления. Однако барий загрязнял конечный продукт, а работать с цианидами было трудно ввиду их крайней токсичности, да и выход цезия был весьма мал. Вол ее рациональный способ найден в 1890 г. известным русским химиком Н.Н. Бекетовым, предложившим восстанавливать гидроокись цезия металлическим магнием в токе водорода при повышенной температуре. Водород заполняет прибор и препятствует окислению цезия, который отгоняется в специальный приемник. Однако и в этом случае выход цезия не превышает 50% теоретического.

Наилучшее решение трудной задачи получения металлического цезия было найдено в 1911 г. французским химиком Акспилем. При методе Акспиля, до сих пор остающемся наиболее распространенным, хлорид цезия восстанавливают металлическим кальцием в вакууме, причем реакция

2CsCl + Ca → CaCl 2 + 2Cs

идет практически до конца. Процесс ведут в специальном приборе (в лабораторных условиях – из кварца или тугоплавкого стекла), снабженном отростком. Если давление в приборе не больше 0,001 мм рт. ст., температура процесса может не превышать 675°C. Выделяющийся цезий испаряется и отгоняется в отросток, а хлористый кальций полностью остается в реакторе, так как в этих условиях летучесть соли ничтожна (температура плавления CaCl 2 равна 773°C, т.е. на 100°C выше температуры процесса). В результате повторной дистилляции в вакууме получается абсолютно чистый металлический цезий.

В литературе описаны еще многие другие способы получения металлического цезия из его соединений, но, как правило, они не сулят особых преимуществ. Так, при замене металлического кальция его карбидом температуру реакции приходится повышать до 800°C, и конечный продукт загрязняется дополнительными примесями. Можно разлагать азид цезия или восстанавливать цирконием его бихромат, но эти реакции взрывоопасны. Впрочем, при замене бихромата хроматом цезия процесс восстановления протекает спокойно, и, хотя выход не превышает 50%, отгоняется очень чистый металлический цезий. Этот способ применим для получения небольших количеств металла в специальном вакуумном приборе.

Мировое производство цезия сравнительно невелико, но в последнее время оно постоянно растет. О масштабах этого роста можно только догадываться – цифры не публикуются.

Свойства цезия

Блестящая поверхность металлического цезия имеет бледно-золотистый цвет. Это – один из самых легкоплавких металлов: он плавится при 28,5°C, кипит при 705°C в обычных условиях и при 330°C в вакууме. Легкоплавкость цезия сочетается с большой легкостью. Несмотря на довольно большую атомную массу (132,905) элемента, его плотность при 20°C всего 1,87. Цезий во много раз легче своих соседей по менделеевской таблице. Лантан, например, имеющий почти такую же атомную массу, по плотности превосходит цезий в три с лишним раза. Цезий всего вдвое тяжелее натрия, а их атомные массы относятся, как 6:1. По-видимому, причина этого кроется в своеобразной электронной структуре атомов цезия. Каждый его атом содержит 55 протонов, 78 нейтронов и 55 электронов, но все эти многочисленные электроны расположены относительно рыхло – ионный радиус цезия очень велик – 1,65 Å*. Ионный радиус лантана, например, равен всего 1,22 Å, хотя в состав его атома входят 57 протонов, 82 нейтрона и 57 электронов.

* Атомный радиус цезия равен 2,62 Å.

Самое замечательное свойство цезия – его исключительно высокая активность. По чувствительности к свету он превосходит все другие металлы. Цезиевый катод испускает поток электронов даже под действием инфракрасных лучей с длиной волны 0,80 мкм. Кроме того, максимальная электронная эмиссия, превосходящая нормальный фотоэлектрический эффект в сотни раз, наступает у цезия при освещении зеленым светом, тогда как у других светочувствительных металлов этот максимум проявляется лишь при воздействии фиолетовых или ультрафиолетовых лучей.

Долгое время ученые надеялись найти радиоактивные изотопы цезия в природе, поскольку они есть у рубидия и калия. Но в природном цезии не удалось обнаружить каких-либо иных изотопов, кроме вполне стабильного 133 Cs. Правда, искусственным путем получено 22 радиоактивных изотопа цезия с атомными массами от 123 до 144. В большинстве случаев они недолговечны: периоды полураспада измеряются секундами и минутами, реже – несколькими часами или днями. Однако три из них распадаются не столь быстро – это 134 Cs, 137 Cs и 135 Cs, живущие 2,07; 26,6 и 3·10 6 лет. Все три изотопа образуются в атомных реакторах при распаде урана, тория и плутония; их удаление из реакторов довольно затруднительно.

Химическая активность цезия необычайна. Он очень быстро реагирует с кислородом и не только моментально воспламеняется на воздухе, но способен поглощать малейшие следы кислорода в условиях глубокого вакуума. Воду он бурно разлагает уже при обычной температуре; при этом выделяется много тепла, и вытесняемый из воды водород тут же воспламеняется. Цезий взаимодействует даже со льдом при –116°C. Его хранение требует большой предосторожности.

Цезий взаимодействует и с углеродом. Только самая совершенная модификация углерода – алмаз – в состоянии противостоять его «натиску». Жидкий расплавленный цезий и его пары разрыхляют сажу, древесный уголь и даже графит, внедряясь между атомами углерода и образуя своеобразные, довольно прочные соединения золотисто-желтого цвета, которые в пределе, по-видимому, отвечают составу C 8 Cs 5 . Они воспламеняются на воздухе, вытесняют водород из воды, а при нагревании разлагаются и отдают весь поглощенный цезий.

Даже при обычной температуре реакции цезия с фтором, хлором и другими галогенами сопровождаются воспламенением, а с серой и фосфором – взрывом. При нагревании цезий соединяется с водородом, азотом и другими элементами, а при 300°C разрушает стекло и фарфор. Гидриды и дейтериды цезия легко воспламеняются на воздухе, а также в атмосфере фтора и хлора. Неустойчивы, а иногда огнеопасны и взрывчаты соединения цезия с азотом, бором, кремнием и германием, а также с окисью углерода. Галоидные соединения цезия и цезиевые соли большинства кислот, напротив, очень прочны и устойчивы. Активность исходного цезия проявляется у них разве только в хорошей растворимости подавляющего большинства солей. Кроме того, они легко превращаются в более сложные комплексные соединения.

Сплавы и интерметаллические соединения цезия всегда сравнительно легкоплавки.

У цезия имеется еще одно весьма важное свойство, тесно связанное с его электронной структурой. Дело в том, что он теряет свой единственный валентный электрон легче, чем любой другой металл; для этого необходима очень незначительная энергия – всего 3,89 эВ. Поэтому получение плазмы из цезия требует гораздо меньших энергетических затрат, чем при использовании любого другого химического элемента.

Где применяется цезий

Неудивительно, что замечательные свойства цезия давно открыли ему доступ в различные сферы человеческой деятельности.

Прежде всего он нашел применение в радиотехнике. Вакуумные фотоэлементы со сложным серебряно-цезиевым фотокатодом особенно ценны для радиолокации: они чувствительны не только к видимому свету, но и к невидимым инфракрасным лучам и, в отличие, например, от селеновых, работают без инерции. В телевидении и звуковом кино широко распространены вакуумные сурьмяно-цезиевые фотоэлементы; их чувствительность даже после 250 часов работы падает всего на 5...6%, они надежно работают в интервале температур от –30° до +90°C. Из них составляют так называемые многокаскадные фотоэлементы; в этом случае под действием электронов, вызванных лучами света в одном из катодов, наступает вторичная эмиссия – электроны испускаются добавочными фотокатодами прибора. В результате общий электрический ток, возникающий в фотоэлементе, многократно усиливается. Усиление тока и повышение чувствительности достигаются также в цезиевых фотоэлементах, заполненных инертным газом (аргоном или неоном).

В оптике и электротехнике широко используются бромиды, иодиды и некоторые другие соли цезия. Если при изготовлении флуоресцирующих экранов для телевизоров и научной аппаратуры ввести между кристалликами сернистого цинка примерно 20% иодистого цезия, экраны будут лучше поглощать рентгеновские лучи и ярче светиться при облучении электронным пучком.

На проходившей в 1965 г. в Москве Международной выставке «Химия-65» в павильоне СССР демонстрировались сцинтилляционные приборы с монокристаллами иодида цезия, активированного таллием. Эти приборы, предназначенные для регистрации тяжелых заряженных частиц, обладают наибольшей чувствительностью из всех приборов подобного назначения.

Кристаллы бромистого и иодистого цезия прозрачны для инфракрасных лучей с длиной волны от 15 до 30 мкм (CsBr) и от 24 до 54 мкм (CsI). Обычные призмы из хлористого натрия пропускают только лучи с длиной волны 14 мкм, а из хлористого калия – 25 мкм. Поэтому применение бромистого и иодистого цезия сделало возможным снятие спектров сложных молекул в отдаленной инфракрасной области.

Весьма чувствительны к свету соединения цезия с оловянной кислотой (ортостаннаты) и с окисью циркония (метацирконаты). Изготовленные на их основе люминесцентные трубки при облучении ультрафиолетовыми лучами или электронами дают зеленую люминесценцию.

Активность многих соединений цезия проявляется в их каталитической способности. Установлено, что при получении синтола (синтетической нефти) из водяного газа и стирола из этилбензола, а также при некоторых других синтезах добавление к катализатору незначительного количества окиси цезия (вместо окиси калия) повышает выход конечного продукта и улучшает условия процесса. Гидроокись цезия служит превосходным катализатором синтеза муравьиной кислоты. С этим катализатором реакция идет при 300°C без высокого давления. Выход конечного продукта очень велик – 91,5%. Металлический цезий лучше, чем другие щелочные металлы, ускоряет реакцию гидрогенизации ароматических углеводородов.

В целом же каталитические свойства цезия изучались мало и его положительное действие оценивалось скорее качественно, чем количественно. Вероятно, это можно объяснить недостаточной актуальностью вопроса, поскольку на цезий имеется настоятельный спрос в ряде других весьма важных областей. К числу последних относится, в частности, медицина. Изотопом 137 Cs, образующимся во всех атомных реакторах (в среднем из 100 ядер урана 6 ядер 137 Cs), заинтересовались специалисты в области рентгенотерапии. Этот изотоп разлагается сравнительно медленно, теряя за год только 2,4% своей исходной активности. Он оказался пригодным для лечения злокачественных опухолей и имеет определенные преимущества перед радиоактивным кобальтом-60: более длительный период полураспада (26,6 года против 5,27) и в четыре раза менее жесткое гамма-излучение. В связи с этим приборы на основе 137 Cs долговечнее, а защита от излучения менее громоздка. Впрочем, эти преимущества становятся реальными лишь при условии абсолютной радиохимической чистоты 137 Cs, отсутствия в нем примеси 134 Cs, имеющего более короткий период полураспада и более жесткое гамма-излучение.

Не только радиоактивный, но и стабильный металлический цезий приобретает все большее значение. Он служит для изготовления специальных выпрямителей, во многих отношениях превосходящих ртутные. В военном и военно-морском деле вакуумные лампы с парами цезия применяются для инфракрасной сигнализации и контроля. В США такого рода прибор, способный обнаружить в темноте всевозможные объекты, называют «снайперскопом».

Но особенно большое внимание уделяется в последнее время цезиевой плазме, всестороннему изучению ее свойств и условий образования. Возможно, она станет «топливом» плазменных двигателей будущего. Кроме того, работы по исследованию цезиевой плазмы тесно связаны с проблемой управляемого термоядерного синтеза. Многие ученые считают, что целесообразно создавать цезиевую плазму, используя высокотемпературную тепловую энергию атомных реакторов, то есть непосредственно превращать эту тепловую энергию в электрическую.

Таков далеко не полный перечень возможностей цезия.

Вскоре после открытия

Цезий, как известно, был первым элементом, открытым с помощью спектрального анализа. Ученые, однако, имели возможность познакомиться с этим элементом еще до того, как Бунзен и Кирхгоф создали новый исследовательский метод. В 1846 г. немецкий химик Платтнер, анализируя минерал поллуцит, обнаружил, что сумма известных его компонентов составляет лишь 93%, но не сумел точно установить, какой еще элемент (или элементы) входит в этот минерал. Лишь в 1864 г., уже после открытия Бунзена, итальянец Пизани нашел цезий в поллуците и установил, что именно соединения этого элемента не смог идентифицировать Платтнер.

Цезий и давление

Все щелочные металлы сильно изменяются под действием высокого давления. Но именно цезий реагирует на него наиболее своеобразно и резко. При давлении в 100 тыс. атм. его объем уменьшается почти втрое – сильнее, чем у других щелочных металлов. Кроме того, именно в условиях высокого давления были обнаружены две новые модификации элементарного цезия. Электрическое сопротивление всех щелочных металлов с ростом давления увеличивается; у цезия это свойство выражено особенно сильно.

Атомные часы

Ядро атома цезия и его валентный электрон обладают собственными магнитными моментами. Эти моменты могут быть ориентированы двояко – параллельно или антипараллельно. Разница между энергиями обоих состояний постоянна, и, естественно, переход из одного состояния в другое сопровождается колебаниями со строго постоянными характеристиками (длина волны 3,26 см). Используя это свойство, ученые создали цезиевые «атомные часы» – едва ли не самые точные в мире.

(Caesium; от лат. caesius - голубой), Cs - хим. элемент I группы периодической системы элементов; ат, н. 55, ат. м. 132,9054. Серебристо-белый металл. В соединениях про являет степень окисления +1 Природный Ц. состоит из стабильного изотопа 133Cs. Получены 22 радиоактивных изотопа, из к-рых наибольшее практическое применение находи изотоп 137Cs с периодом полураспада 27 лет. Цезий открыли (1860) немецкий химик Р. В. Бунзен и немецкий физик Г. P. Кирхгоф при изучении спектра солей щелочных металлов, полученных из воды Дюркгеймского минерального источника.

Металлический цезий впервые получил (1882) К. Сеттерберг электролизом расплава смеси цианидов цезия и бария. Цезий относится к редким элементам. Содержание его в земной коре 3,7 10-4% в природе из-за большой активности в свободном состоянии не встречается. Ц. обнаружен в составе 78 минералов; наибольшее количество его содержится в цезиевых минералах: поллуците (до 36% Cs20), воробьевите и авогадрите (до 7,5% Cs20). В небольших количествах (от 0,004 до 0,001% и меньше) содержится во мн. горных породах: базальтах, гранитах, диабазах, сиенитах, нефелинах, слюдах, полевых шпатах, известняках, глинистых сланцах и др. Основные источники получения Ц. поллуцит, карналлит, рапа соленых озер, рассолы и грязи морского типа. Кристаллическая решетка Ц. объемноцентрированная кубическая спериодом а = 6,05 А (т-ра - 175° С).

Атомный радиус 2,65 А, ионный радиус Cs+ равен 165 А. Плотность1,9039 (т-ра 0°С) и 1,880 г/см3 (т-ра 26,85° С); tпл 28,60° С; tкип 685,85°С; ср. коэфф. линейного расширения (в интервале т-р 0-26° С) 9,7-10-5 град-1; коэфф. теплопроводности (т-ра 28,5° С) 0,04 - 0,065 кал/см -сек-град; теплоемкость ср 7,24 (т-ра 0° С) и 7,69 кал/г-атом град (т-ра 25° С); удельное электрическое сопротивление 18,30 (т-ра 0° С) и 21,25 мком см (т-ра 26,85° С). Металлический Ц. пар амагнитен. Цезий - мягкий пластичный металл. Твердость по шкале Мооса 0,2; НВ - = 0,015; модуль норм- упругости 175 кгс/мм2; сжимаемость при комнатной т-ре 7,0-Ю-5 кгс/см2. Металлический цезий отличается самой высокой реакционной способностью среди щелочных элементов. На воздухе мгновенно окисляется с воспламенением, образуя перекись и надперекись.

С водородом при т-ре 200-350° С и давлении 50-100 ат. образует гидрид CsH — белое кристаллическое вещество, воспламеняющееся во влажной среде, в среде хлора и фтора. С кислородом, в зависимости от условий, даёт:окись Cs2O — красно-коричневые кристаллы, расплывающиеся на воздухе;перекись Cs2O2 — гигроскопичные кристаллы желтого цвета;надперекись CsO2 — желтые кристаллы, при температуре выше 180 ° С изменяют цвет на оранжевый;озонид CsО3 — мелкокристаллический оранжевый — красный порошок; гидроокись CsOH -белое кристаллическое вещество, быстро расплывающееся на воздухе. Ц. непосредственно соединяется с галогенами (с воспламенением), образуя галогениди CsF, CsCl, СsВг в Csl - бесцветные кристаллы, хорошо растворимые в воде и мн. органических растворителях.

В жидком азоте при электрическом разряде между электродами из цезием получают нитрид Cs3N - гигроскопический малоустойчивый порошок серовато-зеленого или синего цвета. Азид CsN3 - желто-белые кристаллы. Известны соединения Ц. с серой, селеном и теллуром - халькогениды. С серой цезий образует сульфид Cs2S - растворимый в воде темно-красный кристаллический порошок. Кроме того, получены ди-, три-и пентасульфиды. Ц. с селеном и теллуром образует кристаллические соединения: белый порошок селенида Cs2Se и светло-желтый порошок теллурида Cs2Te, разлагающиеся на воздухе. С кремнием образует силицид CsSi — кристаллическое вещество желтого цвета, воспламеняющееся на воздухе; при взаимодействии с водой воспламеняется со взрывом. Известны соединения Ц. с фосфором — . При замене водорода в неорганической к-те на Ц. получают соответствующие соли: сульфат, нитрат, карбонат и др.

Со многими металлами, включая щелочные, Цезий образует и интерметаллические соединения, из которых наиболее важны соединения с висмутом, сурьмой, золотом и ртутью. В реакциях с неорганическими соединениями цезий ведёт себя как сильный восстановитель. С двуокисью углерода и четырёххлористым углеродом взаимодействует ствует со взрывом. Металлический Ц, получают в основном, действуя на соли Ц., напр. на , магнием или кальцием при высоких

т-рах в вакууме. Для получения Ц. применяют также электрохимический способ, по к-рому при электролизе, напр., CsCl на жидком свинцовом катоде получают свинцовоцезиевый сплав, из к-рого Ц. удаляют вакуумной дистилляцией. Небольшие количества Ц. получают восстановлением его хромата (Cs2Cr04) порошкообразным цирконием при т-ре 650° С или разложением CsN3 при т-ре 390- 395° С в вакууме.

Области применения Цезия

Его используют в фотоэлементах; в фотоэлектронных умножителях, предназначенных для сцинтилляционных счетчиков, астронавигационных приборов, спектроскопов, для детекторов излучения в лазерных системах; в электронно-оптических преобразователях, используемых в приборах ночного видения; в -передающих электроннолучевых трубках. Цезий применяют в качестве геттера для поглощения остаточных следов воздуха при произ-ве вакуумных радиоламп. Он находит применение в тиратронах тлеющего разряда, в атомных стандартах - наиболее точных эталонах промежутков времени. Погрешность атомных часов с цезиевым источником составляет 1 сек за 4000 лет. Пары цезий используют в оптических квантовых генераторах - газовых лазерах. Добавки Ц. к инертному газу в магнитогидродинамических генераторах позволяют ионизировать газ при температурах примерно в два раза меньших, чем без этих добавок. Ц. используют в термоэмиссионных преобразователях, предназначенных для непосредственного превращения тепла в электр. энергию; в ионных ракетных двигателях для космических летательных аппаратов. Ц. нашел применение в новой отрасли электроники - плазменной электронике СВЧ, а также в цезиевых лампах, превосходящих по своей интенсивности др. источники света.

Характеристика элемента

Открытие цезия, как и рубидия, связано со спектральным анализом. В 1860 г. Р. Бунзен обнаружил две яркие голубые линии в спектре, не принадлежащие ни одному известному к тому времени элементу. Отсюда произошло и название «цезиус (caesius), что значит небесно-голубой. Это последний элемент подгруппы щелочных металлов, который еще встречается в измеримых количествах. Наибольший атомный радиус и наименьшие первые потенциалы ионизации определяют характер и поведение этого элемента. Он обладает ярко выраженной электроположительностью и ярко выраженными металлическими качествами. Стремление отдать внешний 6s-электрон приводит к тому, что все его реакции протекают исключительно бурно. Небольшая разница в энергиях атомных 5 d — и 6 s -орбиталей обусловливает легкую возбудимость атомов. Электронная эмиссия у цезия наблюдается под действием невидимых инфракрасных лучей (тепловых). Указанная особенность структуры атома определяет хорошую электрическую проводимость тока. Все это делает цезий незаменимым в электронных приборах. В последнее время все больше внимания уделяется цезиевой плазме как топливу будущего и в связи с решением проблемы термоядерного синтеза.

Свойства простого вещества и соединений

Цезий при обычных комнатных условиях - полужидкий металл (t пл = 28,5°С, t кип = 688°С) . Его блестящая поверхность отливает бледно-золотистым цветом. Цезий - металл легкий с пл. 1,9 г/см ³ , например примерно с той же атомной массой весит в 6 с лишним раз больше.

Причина того, что цезий во много раз легче соседей по периодической системе - в большом размере атомов. Атомный н ионный радиусы металла очень велики: R ат = 2,62 А, R ион =1,б5 А. Цезий - необычайно химически активен. Он настолько жадно реагирует с кислородом, что способен очистить газовую смесь от малейших следов кислорода даже в условиях глубокого вакуума. С водой реагирует при замораживании до -116° С. Большинство реакций с другими веществами происходит со взрывами: с галогенами, серой, фосфором, графитом, кремнием (в последних трех случаях требуется небольшое нагревание). Сложные также реагируют с ним бурно: СО 2 , четыреххлористый , кремнезем (при 300°С). В атмосфере водорода образуется гидрид СsН, воспламеняющийся в недостаточно осушенном воздухе. Из всех неорганических и органических кислот он вытесняет , образуя соли.

Более спокойно протекают реакции цезия с азотом в поле тихого электрического заряда, а с углем при нагревании. С водородом реагирует при 300-350°С или под давлением в 5 -10 ⋅ 10 ⁶ Па. Поэтому его спокойно можно хранить в сосуде, заполненном водородом.

2Сs + 2SiO 2 = Сs 2 O 4 + 2Si

2Rb + 2SiO 2 = Rb 2 O 4 + 2Si

Из соединений цезия наиболее важные - с серебром и сурьмой. Кристаллы бромида и иодида цезия прозрачны для инфракрасных лучей, поэтому используются в оптике и электротехнике.

Сульфат СsSO 4 - тугоплавкое и термически устойчивое соединение, которое начинает заметно улетучиваться лишь при температуре свыше 1400°С. В тоже время всех солей цезия высока.

Получение и использование цезия

Цезий, как и , самостоятельных минералов не образует и обычно сопутствует более распространённым элементам I группы. Цезий в природе встречается в виде примеси к минералам Na и K . Наиболее богат цезием поллуцит CsNa ⋅ nH 2 O . Находится в природе в очень распылённом состоянии в форме соединений, сопутствующих другим рудам. Например, поллуцит вместе с натрием содержит и и цезий. Самое трудоёмкое при их получении — обогащение и отделение фракций с рубидием и цезием от калия, натрия, лития. Чистые (Rb и Cs) получают из галогенов восстановлением металлическим кальцием при 700-800°С. Получают их по обменной реакции расплавленных хлоридов с металлическим кальцием:

Цезий

ЦЕ́ЗИЙ -я; м. [от лат. caesius - голубой] Химический элемент (Cs), мягкий щелочной металл серебристого цвета (используется в газовых лазерах).

Це́зиевый, -ая, -ое. Ц. катод. Ц-ое покрытие.

це́зий

(лат. Caesium), химический элемент I группы периодической системы, относится к щелочным металлам. Название от лат. caesius - голубой (открыт по ярко-синим спектральным линиям). Серебристо-белый металл, легкоплавкий, мягкий, как воск; плотность 1,904 г/см 3 , t пл 28,4°C. На воздухе воспламеняется, с водой реагирует со взрывом. Основной минерал - поллуцит. Применяют при изготовлении фотокатодов и как геттер; пары цезия - рабочее тело в МГД-генераторах, газовых лазерах.

ЦЕЗИЙ

ЦЕ́ЗИЙ (лат. Cesium), Cs (читается «цезий»), химический элемент с атомным номером 55, атомная масса 132,9054. Имеет один стабильный нуклид 133 Cs. Расположен в группе IA в 6 периоде. Электронная конфигурация внешнего слоя 6s 1 , в соединениях проявляет степень окисления +1 (валентность I). Радиус нейтрального атома цезия 0,266 нм, радиус иона Cs + 0,181 нм (координационное число 6), 0,202 (координационное число 12). Энергии последовательной ионизации атома 3,89397, 25,1 и 34,6 эВ. Сродство к электрону 0,47 эВ. Работа выхода электрона 1,81 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 0,7.
Цезий был открыт в 1860 немецкими учеными Р . В. Бунзеном (см. БУНЗЕН Роберт Вильгельм) и Г. Кирхгофом (см. КИРХГОФ Густав Роберт) в водах Дюрхгеймского минерального источника в Германии методом спектрального анализа. Назван цезием по двум ярким линиям в синей части спектра (от лат. caesius - небесно-голубой). Металлический цезий впервые был выделен в 1882 шведским химиком К. Сеттербергом при электролизе расплава смеси CsCN и Ba.
Содержание в земной коре 3,7·10 -4 % по массе. Типичный редкий, рассеянный элемент. Геохимически тесно связан с гранитнлй магмой, образуя концентрации в пегматитах вместе с Li, Be, Ta, Nb. Известно два крайне редких минерала цезия: поллуцит, (Cs,Na)·n H 2 O и авогадрит, (K,Сs) 4 . Как примесь, 0,0003-5%, цезий содержится в лепидолите (см. ЛЕПИДОЛИТ) , флогопите (см. ФЛОГОПИТ) , карналлите (см. КАРНАЛЛИТ) .
Получение
Цезий получают из поллуцита методом вакуумтермического восстановления. Руду обогащают, затем выделенный концентрат разлагают соляной или серной кислотами или спекают с оксидно-солевыми смесями, СаО и СаСl 2 . Из продуктов разложения поллуцита цезий осаждают в виде CsAl(SO 4) 2 или Cs 3 . Далее осадки переводят в растворимые соли. Особо чистые соединения цезия получают дальнейшей дробной кристаллизацией, сорбцией, экстракцией и ионным обменом. Металлический цезий получают металлотермическим восстановлением хлорида цезия CsCl кальцием (см. КАЛЬЦИЙ) или магнием (см. МАГНИЙ) или электролизом расплава галогенидов (см. ГАЛОГЕНИДЫ) цезия. Хранят цезий в ампулах из стекла пирекс в атмосфере аргона или в стальных герметичных сосудах под слоем обезвоженного вазелинового или парафинового масла.
Физические и химические свойства
Цезий - мягкий серебристо-белый металл. При обычной температуре находится в пастообразном состоянии, температура плавления 28,44°C. Температура кипения 669,2°C. Кристаллическая решетка кубическая объемно центрированная, параметр ячейки а = 0,6141 нм. Плотность 1,904 кг/дм 3 . Цезий имеет высокую чувствительность к свету, цезиевый катод испускает электроны даже под действием инфракрасного (см. ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ) излучения с длиной волны до 0,80 мкм.
Цезий чрезвычайно реакционноспособен. Стандартный электродный потенциал –2,923 В. На воздухе и в атмосфере кислорода (см. КИСЛОРОД) цезий мгновенно воспламеняется, образуя смесь пероксида Сs 2 O 2 и надпероксида цезия CsO 2 . При незначительном содержании кислорода в газе, с которым реагирует цезий, возможно образование оксида Cs 2 O. C водой цезий реагирует со взрывом:
2Cs + 2H 2 O = 2CsOH + H 2
При нагревании под повышенным давлением в присутствии катализатора цезий реагирует с водородом с образованием гидрида CsH. Взаимодействуя с галогенами, дает галогениды CsCl, c серой - сульфид Cs 2 S. С азотом цезий в обычных условиях не реагирует, а нитрид цезия Cs 3 N образуется при пропускании электрического разряда между электродами из цезия, помещенными в жидкий азот. При нагревании цезий реагирует с красным фосфором, образуя фосфид Cs 2 P 5 .
При нагревании взаимодействует с графитом, давая следующие карбиды C 8 Cs, C 24 Cs, C 36 Cs, Cs 2 C 2 (ацетиленид цезия). Цезий восстанавливает кремний из стекла и из SiO 2 . Со многими металлами цезий образует интерметаллиды (см. МЕТАЛЛИДЫ) (CsAu, CsSn 4). Гидроксид цезия CsOH - сильное хорошо растворимое в воде основание. Соли цезия (хлорид CsCl, сульфат Cs 2 SO 4 , нитрат CsNO 3 , карбонат Cs 2 CO 3 и другие) хорошо растворимы в воде. Плохо растворимы в воде перхлорат цезия CsClO 4 , хлорплатинат цезия Cs 2 PtCl 6 и Cs 2 .
Цезий - компонент различных фотокатодов, фотоэлементов, фотоэлектронных умножителей, электронно-лучевых трубок. Цезий используют как геттер. (см. ГЕТТЕР) Чрезвычайно точны «атомные цезиевые часы», резонансная частота энергетического перехода между подуровнями основного состояния 133 Cs положена в основу современного определения секунды (см. СЕКУНДА) . Радионуклид 137 Cs источник гамма-излучения в радиологии.
Цезий - постоянный химический микрокомпонент организма растений и животных. Морские водоросли содержат 0,01-0,1 мкг/г цезия, наземные растения - 0,05-0,2 мкг/г. В организме млекопитающих содержится 0,05 мкг/г цезия, где он концентрируется в мышцах, сердце и печени. В крови до 2,8 мкг/л цезий относительно малотоксичен. Изотоп 137 Cs b-, g-излучающий радиоизотоп, один из компонентов радиоактивного загрязнения атмосферы.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "цезий" в других словарях:

    Очень мягкий металл серебристого цвета; в свободном состоянии не встречается, а только в соединениях. Полный словарь иностранных слов, вошедших в употребление в русском языке. Попов М., 1907. ЦЕЗИЙ щелочной металл, недавно открытый посредством… … Словарь иностранных слов русского языка

    ЦЕЗИЙ - хим. элемент, символ Cs (лат. Caesium), ат. н. 55, ат. м. 132,9, относится к группе щелочных металлов, всегда проявляет степень окисления + 1. Цезий мягкий, как воск, бледно золотистого цвета, лёгкий (плотность 1900 кг/м3) металл, температура… … Большая политехническая энциклопедия

    - (символ Cs), редкий серебристо белый металл первой группы периодической таблицы. Самый щелочной элемент, с положительным электрическим зарядом. Цезий открыт в 1860 г. отличается тянучестью, используют его в фотоэлектрических элементах. Изотоп… … Научно-технический энциклопедический словарь

    Cs (от лат. caesius голубой; лат. Caesium * a. caesium; н. Zasium; ф. cesium; и. cesio), хим. элемент I группы периодич. системы Mенделеева, относится к щелочным металлам, ат. н. 55, ат. м. 132,9054. B природе встречается в виде… … Геологическая энциклопедия

    Поллуцит Словарь русских синонимов. цезий сущ., кол во синонимов: 3 металл (86) поллуцит … Словарь синонимов

    Цезий - (Cesium), Cs, химический элемент I группы периодической системы, атомный номер 55, атомная масса 132,9054; мягкий щелочной металл. Открыт немецкими учеными Р. Бунзеном и Г. Кирхгофом в 1860; металлический цезий выделен шведским химиком К.… … Иллюстрированный энциклопедический словарь

    - (лат. Caesium) Cs, химический элемент I группы периодической системы Менделеева, атомный номер 55, атомная масса 132,9054. Назван от латинского caesius голубой (открыт по ярко синим спектральным линиям). Серебристо белый металл из группы… … Большой Энциклопедический словарь

    ЦЕЗИЙ, цезия, мн. нет, муж. (от лат. caesius голубой) (хим.). Химический элемент, мягкий металл серебристого цвета. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    - (лат. Caesium), Cs, хим. элемент I группы перио дич. системы элементов, ат. номер 55, ат. масса 132,9054, щелочной металл. В природе представлен стабильным Cs. Конфигурация внеш. электронной оболочки 6s1. Энергия последоват. ионизации 3,894;… … Физическая энциклопедия

    - (хим. Caesium; Cs=133 при O=16, среднее из определений Бунзена,Джонсона с Алленом и Годефруа, 1861 1876) первый при содействииспектрального анализа открытый металл. Он получил это название отcaesius небесно синий, лазоревый за цвет двух резких… … Энциклопедия Брокгауза и Ефрона

    ЦЕЗИЙ - ЦЕЗИЙ, Cs, хим. элемент с ат. в. 132,7. Принадлежит к II группе щелочных металлов. По своим свойствам Ц. очень похож на элементы калий и рубидий. Ц. открыт в 1860 г. Бунзеном и Кирхгофом.. В природе встречается в очень небольших количествах… … Большая медицинская энциклопедия



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Красивоцветущие. Плодово-ягодные. Декоративно-лиственные