Красивоцветущие. Плодово-ягодные. Декоративно-лиственные

(рисунок ниже), но у них используется разъем повышенной плотности с «двухэтажным» (как у EISA) расположением ламелей. Сам разъем находится дальше от задней кромки платы, чем разъем PCI.

Порт AGP может использовать три возможных номинала питания интерфейсных схем (Vddq): 3,3 В (для 1x и 2x), 1,5 В (для 2x и 4x) и 0,8 В (для 8x). Сигналы RST# и CLK всегда 3-вольтовые. На слотах и картах имеются механические ключи, предотвращающие ошибочные подключения:

  • слот и карта AGP 1.0 используют напряжение 3,3 В; они имеют ключи на месте контактов 22–25 (перегородка в слоте, рис. а, вырез на разъеме карты);
  • слот и карта AGP 2.0 используют напряжение 1,5 В, они имеют ключи на месте контактов 42–45;
  • универсальный слот AGP 2.0 (3,3 В/1,5 В) не имеет перегородок, а универсальная карта имеет оба выреза. Универсальная системная плата узнает о номинале питания буферов установленной карты по сигналу TYPEDET# - на картах 3,3 В контакт свободен, на картах 1,5 В и универсальных - заземлен. Универсальная карта узнает о номинале питания буферов по уровню напряжения на контактах Vddq (3,3 или 1,5 В). Таким образом и обеспечивается согласование режима карты и системной платы;
  • слот и карта AGP 3.0 используют напряжение 0,8 В, но по ключам они аналогичны 1,5-вольтовым слотам и картам (ключи на месте контактов 42–45). Карта узнает порт AGP 3.0 по заземленной линии MB_DET# (в порте AGP 2.0 он свободен);
  • универсальный слот AGP 3.0 может работать с картой 8x (напряжение 0,8В) и AGP 2.0 (4х, 1,5 В). Здесь напряжение 0,8 В и режим 8x выбираются логикой порта и карты.

Для работы в режимах 2x/4x/8x приемникам требуется опорное напряжение Vref. Его номинал для 3,3 В составляет 0,4×Vddq, для 1,5 В - 0,5×Vddq, для 0,8 В - 0,233×Vddq. Опорное напряжение для приемников генерируется на стороне передатчиков. На контакт A66 (Vrefgc) графическое устройство подает сигнал для порта, на контакт B66 (Vrefcg) порт (чипсет) подает напряжение для устройства AGP.

При передаче в режиме 8x применяется динамическое инвертирование данных на шине AD. Сигнал DBI_LO указывает на инверсию линий AD, DBI_HI - на инверсию AD. Решение об изменении состояния инверсии принимается сравнением выводимой информации с информацией предыдущего такта: если число переключаемых линий в соответствующей половине AD более 8, то соответствующий сигнал DBI_xx меняет состояние на противоположное. Таким образом, на каждой половине шины AD одновременно будет переключаться не более 8 сигнальных линий, что позволяет уменьшить броски тока. Для режима 8x применяется автоматическая калибровка приемопередатчиков, позволяющая согласовать их параметры с линией и партнером. Калибровка производится как статически (при начальном запуске), так и динамически в процессе работы, чтобы компенсировать уход параметров из-за изменения температуры.

В таблице приведено назначение контактов слота AGP применительно к версии 3.0, в скобках приведены назначения контактов для AGP 1.0 и 2.0. Из-за двух ключей на универсальной карте AGP 2.0 теряется пара контактов для подачи питания VCC3.3, и их остается только 4, что ограничивает потребляемый ток (допустимый ток для каждого контакта - 1 А). На универсальной карте AGP 2.0 также нет дополнительного питания 3,3Vaux, используемого для питания цепей формирования сигнала PME# в режиме «сна».

Таблица. Назначение контактов порта AGP

Ряд B Ряд A
OVRCNT# 1 12V
5.0V 2 TYPEDET#
5.0V 3 Резерв
USB+ 4 USB–
GND 5 GND
INTB# 6 INTA#
CLK 7 RST#
REQ# 8 GNT#
VCC3.3 9 VCC3.3
ST0 10 ST1
ST2 11 MB_DET# 3
RBF# 12 DBI_HI (PIPE#)
GND 13 GND
DBI_LO 3 14 WBF#
SBA0 15 SBA1
VCC3.3 16 VCC3.3
SBA2 17 SBA3
SB_STBF (SB_STB) 18 SB_STBS (SB_STB# 1)
GND 19 GND
SBA4 20 SBA5
SBA6 21 SBA7
Резерв (ключ 3,3 В) 22 Резерв (ключ 3,3 В)
GND (ключ 3,3 В) 23 GND (ключ 3,3 В)
3,3Vaux (ключ 3,3 В) 24 Резерв (ключ 3,3 В)
VCC3.3 (ключ 3,3 В) 25 VCC3.3 (ключ 3,3 В)
AD31 26 AD30
AD29 27 AD28
VCC3.3 28 VCC3.3
AD27 29 AD26
AD25 30 AD24
GND 31 GND
AD_STBF1 (AD_STB1) 32 AD_STBS1 (AD_STB1# 1)
AD23 33 C/BE3#
Vddq 34 Vddq
AD21 35 AD22
AD19 36 AD20
GND 37 GND
AD17 38 AD18
C/BE2# 39 AD16
Vddq 40 Vddq
IRDY# 41 FRAME#
Ключ 1,5 В (3,3Vaux) 42 Ключ 1,5 В (Резерв)
Ключ 1,5 В (GND) 43 Ключ 1,5 В (GND)
Ключ 1,5 В (Резерв) 44 Ключ 1,5 В (Резерв)
Ключ 1,5 В (VCC3.3) 45 Ключ 1,5 В (VCC3.3)
DEVSEL# 46 TRDY#
Vddq 47 STOP#
PERR# 48 PME#
GND 49 GND
SERR# 50 PAR
C/BE1# 51 AD15
Vddq 52 Vddq
AD14 53 AD13
AD12 54 AD11
GND 55 GND
AD10 56 AD9
AD8 57 C/BE0#
Vddq 58 Vddq
AD_STBF0 (AD_STB0) 59 AD_STBS0 (AD_STB0# 1)
AD7 60 AD6
GND 61 GND
AD5 62 AD4
AD3 63 AD2
Vddq 64 Vddq
AD1 65 AD0
Vrefcg2 66 Vrefgc 2

1 - Инверсные стробы отсутствуют на картах и слотах 3,3 В (там нет режима 4x/8x).
2 - Опорное напряжение не требуется для слотов и карт 1x.
3 - Только в AGP 3.0.

Кроме собственно AGP в порте AGP заложены сигналы шины USB , которую предполагается заводить в компьютерный монитор (линии USB+, USB– и сигнал OVRCNT#, которым сообщается о перегрузке по току линии питания + 5 В, выводимой в монитор). Сигнал PME# относится к интерфейсу управления энергопотреблением (Power Management Interface). При наличии дополнительного питания 3,3Vaux этим сигналом карта может инициировать «пробуждение».

Спецификация AGP Pro описывает более мощный коннектор, позволяющий в 4 раза повысить мощность, подводимую к графической карте. При этом сохраняется односторонняя совместимость: карты AGP могут устанавливаться в слот AGP Pro, но не наоборот. В настоящее время от коннектора AGP Pro отказались, а для подачи питания на графическую карту используется дополнительный кабель с разъемом.

Коннектор AGP Pro имеет дополнительные контакты с обеих сторон обычного коннектора AGP (см. рисунок ниже) для линий GND и питания 3,3 и 12 В, назначение этих контактов приведено в таблице, которая расположена ниже. Для правильной установки обычной карты со стороны задней кромки системной платы дополнительная часть слота AGP Pro закрывается съемной пластмассовой заглушкой. Карта AGP Pro может также использовать 1–2 соседних слота PCI: чисто механически (как точки опоры и место), как дополнительные коннекторы для подачи питания, как функциональные коннекторы PCI. Потребности в дополнительном питании и креплении взаимосвязаны: высокопроизводительные карты потребляют большую мощность, для отводакоторой требуются мощные (и тяжелые) радиаторы и вентиляторы. К счастью, прогресс в технологии изготовления микросхем приводит к улучшению соотношения «мощность/производительность», так что задача питания и крепления графического адаптера несколько упростилась.

Таблица. Дополнительные контакты коннектора AGP Pro

Цепь Контакты
VCC3.3 C1, C3, D1…D8
GND C2, C4…C8, E3…E14
VCC12 F3…F14
PRSNT1# D10
PRSNT2# D9
Резерв C9, C10, E1, E2, F1, F2

В совокупности карта AGP Pro может потреблять до 110 Вт мощности, забирая ее по шинам питания 3,3 В (до 7,6 А) и 12 В (до 9,2 А) с основного разъема AGP, дополнительного разъема питания AGP Pro и одного-двух разъемов PCI. Карты AGP Pro большой мощности (High Power, 50–110 Вт) занимают 2 слота PCI, малой (Low Power, 25–50 Вт) - 1 слот. Соответственно скобка крепления к задней панели ПК у них имеет утроенную или удвоенную ширину. Кроме того, карты имеют крепеж к передней стенке ПК. На дополнительном разъеме цепь PRSNT1# служит признаком наличия карты (контакт заземлен), а PRSNT2# - признаком потребляемой мощности (до 50 Вт - контакт свободен, до 110 Вт - заземлен).

До появления шины AGP видеокарты подключались к шине PCI (ну, если не считать совсем древних видеокарт для шин ISA, EISA и VESA – большинство пользователей даже не слышали о них). В настоящее время видеокарты представляют собой платы расширения для шин AGP или PCI-E.

Напомню, как отличить разъемы PCI, AGP и PCI-E:

Белый слот – шина PCI;

Коричневый слот – шина AGP;

Черный слот – шина PCI Express.

При покупке видеокарты обратите внимание, к какому стандарту AGP она относится. На сегодня существует четыре стандарта AGP, разница между ними показана в табл. 11.2.


Внимание! Перед установкой видеокарты в слот AGP убедитесь, что материнская плата поддерживает стандарт устанавливаемой платы. Физически можно установить плату стандарта 4x (напряжение 1,5 В) и 8x (1,5 В) в слот 1x (3,3 В) и 2x (3,3 В), но из-за разницы в напряжении видеокарта будет повреждена. Не все материнские платы допускают установку видеоадаптеров как с напряжением 3,3 В, так и с 1,5 В. По этому перед установкой видеокарты убедитесь, что вы не повредите ни материнскую плату, ни видеокарту.

В современные материнские платы нежелательно устанавливать старые видеоадаптеры (AGP 1x, AGP 2x), поскольку AGP-слот обычно рассчитан на установку плат стандартов 4x и 8x. Произойдет непоправимое или нет, зависит только от самого видеоадаптера – некоторые видеоадаптеры позволяют устанавливать напряжение питания с помощью специальной перемычки. Иногда такие перемычки есть на самой материнской плате (например, они точно есть на материнских платах на базе чипсетов Intel 845 и Intel 850). Но чтобы знать, как правильно ее установить, вам нужно прочитать руководство по видеокарте и по материнской плате. А еще лучше, чтобы не рисковать, не пытаться устанавливать «древние» видеокарты в слоты современных материнских плат.

Я, наверное, вас напугал по поводу совместимости видеокарт. Да, небольшие проблемы могут возникнуть – лучше соблюдать осторожность. С современными видиокартами все немного проще. Видеокарты оснащены специальными ключами (рис. 11.3), предотвращающими возможность установки видеокарты в несовместимый по питанию слот.


Рис. 11.3. Ключи 3,3 В и 1,5 В

Если у видеокарты два ключа, то она совместима со стандартами 1x, 2x и 4x (как правило, это 4x-видеокарта). У видеокарты AGP 8x есть только один ключ – он находится на том же месте, что и ключ для 1,5 В.

На некоторых материнских платах есть особый слот – AGP Pro. AGP Pro – это расширение обычного слота AGP, но по краям слота имеются дополнительные разъемы питания видеокарты (рис. 11.4). Как правило, в AGP Pro устанавливаются мощные видеокарты, требующие дополнительного питания.

Существуют две модификации слота AGP Pro:

AGP Pro 110 – предоставляет дополнительные 50–110 Вт для питания видеокарты;

AGP Pro 50 – предоставляет 50 Вт для видеокарты.


Рис. 11.4. Слот AGP Pro

По поводу совместимости с AGP можно отметить следующее:

Видеокарту стандарта AGP Pro нельзя вставить в обычный AGP-слот – она не будет работать;

Видеокарту AGP можно установить в слот AGP Pro при условии, что у видеокарты есть специальный паз для установки в такой слот (рис. 11.5).


Появление шины РСI не сняло всех проблем по качественному выводу визуальной информации для 3-х мерных изображений, "живого" видео. Здесь уже требовались скорости в сотни Мбайт/сек, а нагрузка на PCIсо стороны разных устройств: жестких дисков, сетевых карт и других высокоскоростных устройств привели к тому, что пропускной способности локальной шиныPCIдля удовлетворения всех этих требований начало явно недоставать.

В 1996г. фирма Intel разработала новую шину AGP (Accelerated Graphics Port – порт ускоренной графики), предназначенную только для связи ОЗУ и процессора с видеокартой монитора. Эта шина обеспечивает пропускную способность в сотни Мбайт/сек. Она непосредственно связывает видеокарту с ОЗУ минуя шину РСI (рис. 2)

Характеристики шины AGP

Год создания: 1996

Разрядность шины данных: 32;

Частота шины: 66 МГц;

Раздельные линии адреса и данных (в отличие от PCI);

Конвейеризация операций обращения к памяти;

Максимальная пропускная способность: 532 МБ/с;

Спецификации AGP 2x, AGP4x,AGP8x– возможность пересылать несколько блоков данных за один такт шины. Максимальная пропускная способностьAGP8x: 2 ГБ/с;

Важной особенностью шины AGPявляется конвейеризация операций обращения к памяти. В обычных неконвейерных шинах (например, в шине PCI) при выполнении запроса чтения/записи ячеек оперативной памяти шина простаивает, ожидая завершения этой операции. Конвейерный доступ AGP позволяет в это время передавать следующие запросы, а потом получить ответы на эти запросы в виде непрерывного потока данных.

Шина AGP может объединять в один пакет до 256 запросов чтения/записи ячеек оперативной памяти и получить ответы на них, объединенные в пакет длиной до 256 32-разрядных слов данных.

Графическая подсистема

AGPпредназначалась для того, чтобы графические карты могли хранить необходимые им данные (текстуры) не только в своей дорогой локальной памяти, установленной на борту, но и в дешевой системной памяти компьютера. При этом они (карты) могли иметь меньший объем этой самой локальной памяти и, соответственно, дешевле стоить.

Ускоренный графический порт (AGP) -- это расширение шины PCI, чье назначение -- обработка больших массивов данных 3D графики. Intel разрабатывала AGP для решения двух проблем перед внедрением 3D графики на PCI. Во-первых, 3D графике требуется как можно больше памяти информации текстурных карт (texture maps) и z-буфера (z-buffer), который содержит информацию, относящуюся к представлению глубины изображения.

Разработчики PC имели ранее возможность использовать системную память для хранения информации о текстурах и z-буфера, но ограничением в этом подходе была передача такой информации через шину PCI. Производительность графической подсистемы и системной памяти ограничиваются физическими характеристиками шины PCI. Кроме того, ширина полосы пропускания PCI, или ее емкость, не достаточна для обработки графики в режиме реального времени. Чтобы решить эти проблемы, Intel разработала AGP.

Если определить кратко, что такое AGP, то это - прямое соединение между графической подсистемой и системной памятью. Это решение позволяет обеспечить значительно лучшие показатели передачи данных, чем при передаче через шину PCI, и явно разрабатывалось, чтобы удовлетворить требованиям вывода 3D графики в режиме реального времени.

Через AGP можно подключить только один тип устройств - это графическая плата. Графические системы, встроенные в материнскую плату и использующие AGP, не могут быть улучшены.

Скорость, с которой мы получаем информацию на наши экраны, и количество информации, которое выходит из видеоадаптера и передается на экран - все зависит от трех факторов:

Разрешение вашего монитора

Количество цветов

Частота, с которой происходит обновление экрана

Современная видеокарта – это, по сути, второй самостоятельный компьютер внутри персонального компьютера. Причем, когда пользователь играет в 3-D игру, процессор видеокарты фактически выполняет большую часть работы, а центральный процессор отступает на второй план. Более мощный графический процессор создает более реалистическое изображение.

Для увеличения производительности графической подсистемы настолько, насколько это возможно, приходится снижать до минимума все препятствия на этом пути. Графический контроллер производит обработку графических функций, требующих интенсивных вычислений, в результате разгружается центральный процессор системы. Отсюда следует, что графический контроллер должен оперировать своей собственной, можно даже сказать частной, местной памятью. Тип памяти, в которой хранятся графические данные, называется буфер кадра (frame buffer). В системах, ориентированных на обработку 3D-приложений, требуется еще и наличие специальной памяти, называемой z-буфер (z-buffer), в котором хранится информация о глубине изображаемой сцены. Также, в некоторых системах может иметься собственная память текстур (texture memory), т.е. память для хранения элементов, из которых формируются поверхности объекта. Наличие текстурных карт ключевым образом влияет на реалистичность изображения трехмерных сцен.

В принципе, для работы современных офисных приложений и просмотра видеофильмов вполне хватает 8Мбайт видеопамяти для разрешения 800х600 или 16 Мбайт для разрешения 1024х768. Вся остальная память, свыше этого, которая имеется сегодня в современных видеоадаптерах, тратится на сторонние нужды, в частности, для поддержки экранной графики операционной системы Windows (особенно в WindowsVista).

Использование 64, 128, 256 и 512 МБайт видеопамяти связано, в первую очередь, с интересами «игроманов». Следует сказать, что стремительное увеличение объема видеопамяти в настоящее время не связано с таким же прогрессом повышения разрешения изображения на экране. Практически уже достигнут потолок для традиционных систем отображения видеоинформации. Основная же причина все большего наращивания оперативной памяти видеоадаптера состоит в том, что на плате видеоадаптера теперь находится видеопроцессор, который может самостоятельно, по управляющим командам центрального процессора, строить объемные изображения (они же -3D), а это требует необычайно много ресурсов для хранения промежуточных результатов вычислений и образцов текстур, которыми заливаются условные плоскости моделируемых фигур.

Однако, даже для офисных приложений, сегодня, если в операционной системе Windowsиспользуется интерфейсDirectX9 или 10, объем памяти видеокарты долэен быть не менее 128 МБайт.

Первоначально, видеокарты строились по следующим принципам. Все, что записывается центральным процессором в видеопамять, по строго определенным алгоритмам преобразуется в аналоговый видеосигнал, который подается на монитор. Таким образом, центральному процессору необходимо самому рассчитать параметры всех точек, которые должны быть в данный момент отражены на экране, и загрузить все данные в видеопамять. Любое изменение на экране, даже если это след мыши, это результат работы центрального процессора. Соответственно, чем больше используемое разрешение и количество цветов, тем больше процессор затрачивает времени на расчет всех точек формируемого растра.

Так как персональный компьютер с течением времени стал неразрывно связан с графическим интерфейсом Windows, и различными трехмерными играми, то разработчики «железа» предприняли ряд шагов по совершенствованию стандартной видеокарты, чтобы избавить центральный процессор от лишней работы по прорисовке элементарных изображений. Подобные устройства получили название графических ускорителей, или иначе графических акселераторов (они же видео- или графические процессоры).

Предупреждение : Все манипуляции с оборудованием следует производить только при полностью выключенном компьютере! Недостаточно выключить компьютер кнопкой/командой операционной системы, поскольку часть схем все равно остается под напряжением. Следует вынуть провод к блоку питания из розетки. Включайте компьютер только после проверки, что видеокарта полностью зашла в слот материнской платы и не шатается, а все провода подключены плотно.

Прежде всего следует узнать, какую версию стандарта AGP поддерживает материнская плата. Обратитесь к документации или сайту производителя. Также вы можете воспользоваться такими утилитами как Sandra и RivaTuner (функция «Диагностический отчет» (Diagnostic report)). Было разработано три основных версии шины: 1.0, 2.0 и 3.0. Каждая версия увеличивала максимальную скорость работы шины (2х, 4х и 8х, соответственно), но основным отличием в свете совместимости является рабочее напряжение в сигнальных линиях. Стандарт AGP 1.0 использует напряжение 3.3, 2.0 — 1.5 и 3.0 — 0.8 Вольт. Более новые версии позволяют использовать устройства, разработанные для предыдущих, но обратную совместимость должен обеспечивать разработчик/изготовитель конкретного оборудования.

Установите версию стандарта AGP , поддерживаемую видеокартой, до ее установки . В связи с наличием большого числа NoName карт без документации и сведений о производителе Вы можете воспользоваться нашими наглядными пособиями:

Соответственно, материнская плата может иметь слот:

  • AGP 1.0. В такой слот можно установить видеокарту формата AGP 1.0 или Universal AGP
  • AGP 2.0 only. В такой слот можно установить видеокарту формата AGP 2.0 или Universal AGP
  • Universal AGP . В такой слот можно установить любую видеокарту

Слот материнской платы снабжен перемычками-ключами в тех местах, где на рисунках в разъеме видеокарты прорезь. Вследствие этого установить видеокарту неподдерживаемого стандарта не удастся чисто механически. Дополнительно, есть простые практические правила:

  • Все материнские платы, поддерживающие только AGP 1.0, имеют слот формата AGP 1.0
  • Все материнские платы, поддерживающие AGP 3.0, имеют слот формата AGP 2.0
  • Все видеокарты на базе NVIDIA, начиная с GeForce 6X00, имеют разъем формата AGP 2.0

Устройства стандарта AGP 3.0 используют те же разъемы, что и устройства AGP 2.0. Теоретически возможны только AGP 3.0 видеокарты и материнские платы, но все серийно выпускавшиеся AGP 3.0 устройства имели полную обратную совместимость с AGP 2.0.

Профессиональные видеокарты на базе NVIDIA Quadro обычно выпускались с разъемом AGP Pro 50. Этот разъем отличается наличием дополнительных 12 контактов усиления питания карты. При этом видеокарта может либо иметь третью прорезь в разъеме, тогда ее можно установить в стандартный слот, либо не иметь, и установить ее будет возможно только в слот AGP Pro.

Желательно, если число слотов шины позволяет, выдерживать интервал в один пустой слот между видеокартой и звуковой картой, ТВ-тюнером или модемом. Все эти устройства в процессе работы создают электромагнитные помехи, и в то же время чувствительны к ним. Также это улучшит охлаждение видеокарты.

Начиная с семейства GeForce FX, видеокарты имеют энергопотребление, превышающее заложенные в интерфейс AGP возможности по электроснабжению устройств. Вследствие этого, видеокарты требуют подключения дополнительного усиления питания. Разъем подключения усиления на видеокарте выполняется в виде одного-двух 4-контактных разъемов Molex (как для питания IDE жестких дисков и CD- ROM). Провод усиления должен быть обязательно подключен, иначе видеокарта будет работать в безопасном режиме, со значительно сниженными частотами и напряжением питания графического процессора, а особо мощные видеокарты не заработают без усиления вообще. Перед приобретением видеокарты убедитесь, что блок питания компьютера имеет необходимое количество свободных разъемов для подключения усиления.

Предупреждение : Ряд первых материнских плат на чипсетах с поддержкой только AGP 2.0 (1.5 В), в частности Intel 845, имеют универсальный слот, позволяющий установить карту AGP 1.0 (3.3 В). Установка такой карты с большой вероятностью приведет к выходу из строя материнской платы.

Предупреждение : Ряд видеокарт, в частности на базе Riva TNT2 выпуска 1999 года и на базе Vanta имеют Universal AGP разъем, но реально являются 3.3 В картами. Установка таких карт в материнскую плату, не поддерживающую 3.3 В устройства, с большой вероятностью приведет к повреждению материнской платы. Если Вы планируете установить такую карту в новую материнскую плату, сначала проверьте ее в материнской плате AGP 2.0, гарантированно поддерживающей 3.3 В карты. Если карта является только 3.3 В устройством, то она не сможет заработать в режиме 4х.

Предупреждение : Ряд производителей материнских плат предлагают платы, построенные на чипсетах без поддержки порта AGP (Intel 865GV, большинство чипсетов с шиной PCI Express), на которых тем не менее слот AGP присутствует. Это, например, платы с технологиями A.G.I фирмы Asrock и AGP Express фирмы ECS. В таких платах слот AGP получен из слота PCI . Это возможно благодаря полной обратной совместимости протокола обмена по шине AGP с протоколом PCI . Слот AGP у таких плат является только механически и электрически AGP слотом, видеокарта, вставленная в такой слот, работает как обычная видеокарта для шины PCI . Помимо значительного снижения производительности AGP видеокарты, такие материнские платы имеют большие проблемы с совместимостью. Если Вы все-таки решились на приобретение такой платы и эксплуатацию в ней AGP видеокарты, обязательно проверьте, присутствует ли Ваша видеокарта в списке поддерживаемых в документации/на сайте производителя. Если вашей модели в списках нет, лучше воздержаться от приобретения такой материнской платы.

Аббревиатура AGP либо вам знакома, либо вы не любите играть на компьютере. Так обозначается популярная разновидность системной шины, имеющая особый формат разъема для подключения плат расширения. Существует немало карт расширения, предназначенных для данной 32-разрядной шины, и практически все они относятся к категории графических ускорителей. Хотя в настоящее время, начиная с 2010 г., видеокарты для данной шины практически не выпускаются, поскольку она уступила пальму первенства , тем не менее, существует немало компьютеров, имеющих графические ускорители, предназначенные для шины AGP.

За все время существования системной шины персонального компьютера было разработано несколько ее различных стандартов. Однако лишь немногие из этих шин разрабатывались специально для подключения видеокарт. Шина AGP является одним из примеров подобной шины.

Возможно, читателям будет интересно узнать, что же обозначает данная аббревиатура. Она расшифровывается как Accelerated Graphic Port (Ускоренный графический порт). Шина AGP была разработана компанией Intel в 1996 г. в качестве усовершенствования шины PCI, и впервые начала применяться в чипсетах Intel, предназначенных для процессоров Pentium и Pentium 2. В операционных системах семейства Windows поддержка шины появилась, начиная с Windows 95 OSR2 и Windows NT 4.0 SP3.

Основной идеей при разработке шины было не только повышение эффективности видеосистемы компьютера, но и ее удешевление. Это предполагалось достигнуть за счет уменьшения объема оперативной памяти карты, поскольку стандарт Accelerated Graphic Port предполагал улучшенные по сравнению с PCI возможности по использованию основной оперативной памяти компьютера.

За время существования шины было выпущено несколько ее спецификаций, последней из которых стала спецификация 3.0. Кроме того, было разработано несколько стандартов скорости шины, начиная от 1x и кончая 8x.

По мере развития компьютерного «железа», начиная с середины 2000-х гг., стало очевидно, однако, что шина AGP не удовлетворяет новым требованиям, предъявляемым к графическим ускорителям. Поэтому было создано несколько расширений стандарта, например, 64-разрядная шина Accelerated Graphic Port или вариант шины, получивший название Accelerated Graphic Port Pro. Кроме того, некоторыми разработчиками материнских плат был создан ряд неофициальных расширений шины, однако они не получили широкого распространения.

Характеристики и отличие от PCI

До появления шины Accelerated Graphic Port подавляющее большинство графических ускорителей использовало разъем PCI. В отличие от PCI новая шина имела вдвое большую тактовую частоту (66 МГц), а также вдвое более высокую скорость передачи данных (533 МБ/c). Хотя первоначально она имела такое же напряжение питания, как и PCI – 3,3 В, впоследствии, в спецификациях 2.0 и 3.0 оно было уменьшено до 1,5 и 0,8 В соответственно. Также, в отличие от PCI, шина поддерживала прямой доступ к памяти DMA и разделение запросов по обработке данных. Работой шины был призван управлять AGP-контроллер, расположенный в чипсете материнской платы.

Характеристики шины различных версий приведены в нижеследующей таблице:

Стандартный слот AGP имеет 132 контакта (по 66 с каждой стороны). В целом их расположение похоже на расположение контактов шины PCI, однако имеется и несколько дополнительных сигналов. В то же время разъем может иметь несколько вариантов, отличающихся рабочим напряжением. Разъем, рассчитанный на напряжение в 1,5 В, так же, как и разъем, рассчитанный на напряжение в 3,3 В, имеет специальный выступ, который исключает вставку платы неподходящего стандарта. Кроме того, существует и универсальный разъем, который позволяет вставлять в него видеокарты всех типов. Также имеются видеокарты, которые можно вставить в разъем любого типа.

Однако следует иметь в виду, что существуют материнские платы, использующие разъем, рассчитанный лишь на определенное значение напряжения, и при этом не снабженные ключами, исключающими неправильное подключение. Поэтому при установке видеокарт в разъем стоит обращать внимание на данный момент, а также изучить инструкции к материнской плате и видеокарте и сравнить их характеристики, поскольку подключение видеокарты в разъем с неправильным напряжением грозит выходом из строя как карты, так и самого разъема.

Разъем для карт, поддерживающих стандарт Accelerated Graphic Port Pro, тоже имеет два варианта, рассчитанных на разные напряжения – 1,5 В и 3,3 В. Карты обычного стандарта можно вставить в слот типа Pro, однако обратную операцию осуществить невозможно.

Настройка работы шины в BIOS

Возможно, многих читателей интересуют такие вопросы, как включить AGP и как настроить AGP. Для этой цели проще всего обратиться к средствам BIOS Setup. Как таковое включение шины Accelerated Graphic Port в БИОС не производится, она активирована по умолчанию. Но в BIOS можно встретить немало опций, предназначенных для её конфигурирования. Например, при помощи можно включить режим быстрой записи для видеокарты. В этом режиме видеокарта получает данные напрямую от центрального процессора, минуя системную оперативную память, как промежуточное место их хранения. При помощи же , можно установить размер ОЗУ, который будет использован видеокартой с этим интерфейсом. Подробнее о настройке некоторых параметров работы шины вы можете почитать на нашем сайте в разделе, посвященном опциям BIOS («Параметры чипсета»).

Заключение

Хотя сейчас в большинстве материнских плат слот AGP уступил свое место слотам такой высокопроизводительной шины, как PCI Express, тем не менее, внедрение шины Accelerated Graphic Port оказалось в свое время настоящим прорывом в мире графических видеокарт. Кроме того, графические карты этого формата все еще можно встретить во многих работающих компьютерах.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Красивоцветущие. Плодово-ягодные. Декоративно-лиственные