Красивоцветущие. Плодово-ягодные. Декоративно-лиственные

Человек всегда мечтал летать в небе. Помните историю об Икаре и его сыне? Это, конечно, всего лишь миф и как было на самом деле мы никогда не узнаем, но жажду парить в небе эта история раскрывает сполна. Первые попытки взлететь в небо были сделаны при помощи огромного который сейчас скорее средство для романтических прогулок в небе, затем появился дирижабль, а вместе с этим позже появляются самолеты и вертолеты. Сейчас уже практически ни для кого не является новостью или чем-то необычным то, что можно слетать за 3 часа самолетом на другой континент. Но как это происходит? Почему самолеты летают и не падают?

Объяснение с физической точки зрения довольно простое, но тяжелее это исполнить на практике

Многие годы проводились различные эксперименты по созданию летающей машины, было создано много прототипов. Но чтобы понять, почему самолеты летают, достаточно знать второй закон Ньютона и уметь это воспроизвести на практике. Сейчас уже люди, а точнее инженеры и ученые, стараются создать такую машину, которая бы летала на колоссальных скоростях, превышающих в несколько раз скорость звука. То есть вопрос уже состоит не в том, как летают самолеты, а как сделать так, чтобы они летали быстрее.

Две вещи для того, чтобы самолет взлетел - мощные двигатели и правильная конструкция крыльев

Двигатели создают огромную тягу, которая толкает вперед. Но этого недостаточно, ведь нужно еще и вверх подняться, а при таком раскладе выходит, что пока что мы можем только разогнаться по поверхности до огромной скорости. Следующим важным моментом является форма крыльев и самого корпуса самолета. Именно они создают поднимающую силу. Сделаны крылья так, что под ними воздух становится медленнее, чем над ними, и в итоге выходит, что воздух снизу толкает корпус вверх, а воздух над крылом неспособен сопротивляться этому воздействию при достижении самолетом определенной скорости. Это явление называется в физике подъемной силой, и, чтобы разобраться в этом подробнее, нужно иметь немного познаний в аэродинамике и в прочих сопутствующих законах. Но для понимания того, почему самолеты летают, этих знаний достаточно.

Посадка и взлет - что нужно для этого машине?

Для самолета необходима огромная взлетная полоса, а точнее - длинная взлетная полоса. Это связано с тем, что ему в первую очередь нужно набрать определенную скорость для взлета. Для того чтобы сила подъема начала действовать, необходимо разогнать самолет до такой скорости, что воздух снизу крыльев начнется подымать конструкцию вверх. Вопрос о том, почему низко летают самолеты, касается именно этой части, когда машина идет на взлет или на посадку. Низкий старт дает возможность подняться самолёту очень высоко в небо, и мы это часто видим в ясную погоду - рейсовые самолеты, оставляя за собой белый след, перемещают людей из одной точки в другую намного быстрее, чем это можно сделать при помощи наземного транспорта или морского.

Топливо для самолетов

Также интересует, почему самолеты летают на керосине. Да, в основном так и есть, но дело в том, что некоторые типы техники используют в качестве топлива привычный бензин и даже солярку.

Но в чем преимущество керосина? Таковых несколько.

Первым, наверное, можно назвать его стоимость. Он значительно дешевле, чем бензин. Второй причиной можно назвать его легкость, в сравнении с тем же бензином. Также керосин имеет свойство гореть, если можно так сказать, плавно. В машинах - легковых или грузовых - нам нужна возможность резкого включения и выключения двигателя, когда самолет рассчитан на то, чтобы его запустить и постоянно поддерживать движение турбин на заданной скорости длительное время, если говорить о пассажирских самолетах. Легкомоторная авиация, которая не предназначена для перевозок огромных грузов, а по большей части связана с военной промышленностью, с агрохозяйством и прочее (в такой машине могут разместиться только до двух человек), мала и маневренна, а потому бензин является подходящим для этой области. Его взрывное горение подходит для того типа турбин, которые установлены в легкой авиации.

Вертолет - конкурент или друг самолету?

Интересное изобретение человечества, связанное с перемещением в воздушном пространстве - вертолет. У него есть главное преимущество перед самолетом - вертикальные взлет и посадка. Он не требует огромного пространства для разгона, а почему самолеты летают только с оборудованных для этих целей мест? Правильно, необходима достаточно длинная и гладкая поверхность. Иначе исход посадки где-то в поле может стать чреватым разрушением машины, а того хуже - человеческими жертвами. А посадку вертолета можно совершить на крыше здания, которая приспособлена, на стадионе и т. п. Для самолета эта функция недоступна, хотя конструкторы уже работают над тем, чтобы объединить мощность и с вертикальным взлетом.

С древних времен, наблюдая за полетом птиц, человек сам хотел научиться летать. Желание летать подобно птице нашло отражение в древних мифах и легендах. Одной из таких легенд является легенда об Икаре, который сделал крылья, чтобы взлететь высоко в небо, ближе к лучезарному солнцу. И хотя полет Икара закончился трагически, птицы прекрасно летают, несмотря на то, что они существенно тяжелее воздуха. Через три тысячи лет после возникновения этой легенды, в самом начале ХХ века, был осуществлен первый в истории полет человека на самолете. Этот полет длился всего 59 секунд, а пролетел самолет всего 260 метром. Так сбылась давняя мечта человека о полете. Современные самолеты летают гораздо дальше и дольше. Давайте попробуем разобраться, почему летает самолет, обладающий огромной массой, почему он при этом может летать быстрее, выше и дальше любой птицы, почему планер без мотора может долгое время парить в воздухе.

Несмотря на то, что во время полета, в отличие от птиц, крылья у самолета жестко закреплены на корпусе, самолет летает именно благодаря им, а также двигателям, которые создают силу тяги и разгоняют самолет до необходимой скорости. Сечение крыла самолета очень похоже на сечение крыла птицы. И это не случайно, так как, конструируя самолет, люди, в первую очередь, ориентировались на полет птиц. Во время полета на крыло самолета действуют четыре силы: сила тяги, создаваемая двигателями, сила тяжести, направленная к Земле, сила лобового сопротивления воздуха, препятствующая движению самолета, и, наконец, подъемная сила, которая и обеспечивает набор высоты. Соотношение этих сил и определяет способность самолета летать. При полете с постоянной скоростью сумма этих сил должна быть равна 0: сила тяги компенсирует силу лобового сопротивления, а подъемная сила – силу тяжести. Это важно знать всем, кто увлекается авиамоделированием, чтобы изготовить надежную летающую модель самолета.

Очень важным параметром является угол атаки – угол между хордой крыла (линией, соединяющей переднюю и заднюю кромки крыла) и направлением воздушного потока, обтекающего крыло. Чем меньше угол атаки, тем меньше сила лобового сопротивления, но вместе с тем меньше и подъемная сила, обеспечивающая взлет и устойчивый полет. Поэтому увеличение угла атаки обеспечивает достаточную для взлета и полета подъемную силу. Из-за несимметричности формы крыла воздух над крылом движется быстрее, чем под ним и, согласно уравнению Бернулли, давление воздуха под крылом больше, чем над ним. Однако возникающая при этом подъемная сила недостаточна для взлета, а основной эффект достигается за счет уплотнения воздуха под крылом набегающим потоком, что существенным образом зависит от угла атаки крыла самолета. Меняя угол атаки, можно управлять полетом самолета, эту функцию выполняют закрылки – отклоняемые поверхности, симметрично расположенные на задней кромке крыла. Они используются для улучшения несущей способности крыла во время взлёта, набора высоты, снижения и посадки, а также при полёте на малых скоростях.

Великий русский механик, создатель науки аэродинамики Николай Егорович Жуковский, всесторонне исследовав динамику полета птиц, открыл закон, определяющий подъемную силу крыла. Эта сила определяется разностью давлений над крылом и под ним и рассчитывается по следующей формуле:

где ‑ плотность воздуха, ‑ скорость набегающего воздушного потока, ‑ площадь крыльев самолета, ‑ скорость циркуляции воздуха возле крыла. Зависимость подъемной силы от угла атаки можно получить, используя закон сохранения импульса:

Похожую формулу для расчета подъемной силы первого в истории человечества самолета использовали братья Райт:

где
‑ коэффициент Смитона, полученный еще в XVIII веке. Эта формула получается из предыдущей при угле атаки, равном 45 0 . Используя эту формулу, можно рассчитать минимальную скорость самолета, необходимую для его взлета:

где ‑ ускорение свободного падения, m – масса самолета.

Давайте рассчитаем скорость взлета самолета Boing 747-300. Его масса примерно 3 10 5 кг, а площадь крыла 511 м 2 . Учитывая, что плотность воздуха 1,2 кг/м 3 , получим значение скорости примерно 70 м/с или около 250 км/ч. Именно с такой скоростью взлетают современные пассажирские самолеты.

По предложенному методу мы предлагаем вам рассчитать скорость, которую должна иметь модель самолета массой 5 кг и площадью крыла 0,04 м 2 , чтобы взлететь.

Как летают самолеты?

Самолет относится к летательным аппаратам тяжелее воздуха. Это означает, что для его полета нужны определенные условия, сочетание точно рассчитанных факторов. Полет самолета – это результат действия подъемной силы, которая возникает при движении потоков воздуха навстречу крылу. Оно повернуто под точно рассчитанным углом и имеет аэродинамическую форму, благодаря которой при определенной скорости начинает стремиться вверх, как говорят летчики – “становится на воздух”.

Разгоняют самолет и поддерживают его скорость двигатели. Реактивные толкают самолет вперед за счет сгорания керосина и потока газов, вырывающихся из сопла с большой силой. Винтовые двигатели “тянут” самолет за собой.

Крыло современных самолетов является статичной конструкцией и само по себе не может самостоятельно создавать подъемную силу. Возможность поднять многотонную машину в воздух возникает только после поступательного движения (разгона) летательного аппарата с помощью силовой установки. В этом случае крыло, поставленное под острым углом к направлению воздушного потока, создает различное давление: над железной пластиной оно будет меньше, а снизу изделия – больше. Именно разность давлений приводит к возникновению аэродинамической силы, способствующей набору высоты.

Материалы по теме:

Почему за самолетом остается след, а иногда нет?

Подъемная сила самолетов состоит из следующих факторов:

  1. Угла атаки
  2. Несимметричного профиля крыла

Наклон металлической пластины (крыла) к воздушному потоку принято называть углом атаки. Обычно при подъеме самолета упомянутое значение не превышает 3-5°, чего достаточно для взлета большинства моделей самолетов. Дело в том, что конструкция крыльев с момента создания первого летательного аппарата претерпела серьезные изменения и сегодня представляет собой несимметричный профиль с более выпуклым верхним листом металла. Нижний лист изделия характеризуется ровной поверхностью для практически беспрепятственного прохождения воздушных потоков.

Схематично процесс образования подъемной силы выглядит так: верхним струйкам воздуха нужно пройти больший путь (из-за выпуклой формы крыла), чем нижним, при этом количество воздуха за пластиной должно остаться одинаковым. В результате верхние струйки будут двигаться быстрее, создавая согласно уравнению Бернулли область пониженного давления. Непосредственно различие в давлении над и под крылом в купе с работой двигателей помогает самолету набрать требуемую высоту. Следует помнить, что значение угла атаки не должно превышать критической отметки, иначе подъемная сила упадет.

Крыла и двигателей недостаточно для управляемого, безопасного и комфортного полета. Самолетом нужно управлять, при этом точность управления более всего нужна во время посадки. Летчики называют посадку управляемым падением – скорость самолета снижается так, что он начинает терять высоту. При определенной скорости это падение может быть очень плавным, приводящим к мягкому касанию колесами шасси полосы.

Материалы по теме:

Почему в авиации используют заклепки?

Управление самолетом совершенно не похоже на управление автомобилем. Штурвал пилота предназначен для отклонения вверх и вниз и создания крена. “На себя” – это набор высоты. “От себя” – это снижение, пикирование. Для того, чтобы повернуть, изменить курс, нужно нажать на одну из педалей и штурвалом наклонить самолет в сторону поворота… Кстати, на языке пилотов это называется “разворот” или “вираж”.

Для разворота и стабилизации полета в хвосте самолета расположен вертикальный киль. А находящиеся под ним и над ним небольшие “крылья” – это горизонтальные стабилизаторы, которые не позволяют огромной машине бесконтрольно подниматься и опускаться. На стабилизаторах для управления имеются подвижные плоскости – рули высоты.

Для управления двигателями между креслами пилотов находятся рычаги – при взлете они переводятся полностью вперед, на максимальную тягу, это взлетный режим, необходимый для набора взлетной скорости. При посадке рычаги отводят полностью назад – в режим минимальной тяги.

Многие пассажиры с интересом смотрят, как перед посадкой задняя часть огромного крыла вдруг опускается вниз. Это закрылки, “механизация” крыла, которая выполняет несколько задач. При снижении полностью выпущенная механизация тормозит самолет, чтобы не дать ему слишком разогнаться. При посадке, когда скорость очень невелика, закрылки создают дополнительную подъемную силу для плавной потери высоты. При взлете они помогают основному крылу удерживать машину в воздухе.

Шутки шутками, но определенный налет серьезности появляется в подобной ситуации не только у обремененного авиационными знаниями человека. Тем более, что вышеупомянутая сорокатонная «дура» — это, вобщем-то, средний по размерам самолет российских ВВС СУ-24. Ну, а если этот «посерьезневший» человек окажется свидетелем неторопливого, но о-о-очень уверенного взлета самого большого в мире транспортного самолета АН-225 «Мрия» («Мечта» по-украински, кто не знает)?.. Комментировать больше ничего не буду. Добавлю лишь, что взлетный вес этой «птички» — 600 тонн.

Да, впечатления на этой почве могут быть очень глубокими. Но, как бы то ни было, эмоции здесь совершенно ни при чем. Физика. Одна голая физика. Именно подчиняясь законам физики, поднимаются в воздух все летательные аппараты, начиная с легких спортивных самолетов и заканчивая тяжелыми транспортниками и, казалось бы, уж совсем бесформенными вертолетами, непонятно как удерживающимися в воздухе. И происходит все это за счет подъемной силы да еще силы тяги двигателя.

Словосочетание «подъемная сила» знакомо практически любому человеку, но удивительно то, что далеко не каждый может сказать, откуда же она все-таки берется, эта самая сила. А между тем объяснить ее происхождение можно просто, буквально «на пальцах», не влезая в математические дебри.

Как известно, главная несущая поверхность самолета — это крыло. Оно практически всегда имеет определенный профиль, у которого нижняя часть плоская, а верхняя выпуклая (по определенному закону). Воздушный поток, проходя под нижней частью профиля, почти не меняет своей структуры и формы. Зато, проходя над верхней частью, он сужается, ведь для него верхняя поверхность профиля — это как вогнутая стенка в трубе, по которой этот самый поток как бы протекает.

Теперь, чтобы через эту «продавленную» трубу прогнать за определенное время тот же обьем воздуха, его нужно двигать быстрее, что и происходит на самом деле. Осталось вспомнить закон Бернулли из любимого школьного курса физики, который гласит, что чем выше скорость потока, тем ниже его давление. Таким образом, давление над профилем (а значит и над всем крылом) ниже давления под ним.

Возникает сила, которая старается «выдавить» крыло, а значит и весь летательный аппарат вверх. Это и есть та самая вышеупомянутая подъемная сила. Как только она становится больше веса — ура! Мы в воздухе! Мы летим! И, кстати, чем выше наша скорость, тем больше подъемная сила. Если же в дальнейшем подъ

емная сила и вес сравняются по величине, то самолет перейдет в горизонтальный полет. А хорошую скорость нам придаст мощный авиационный двигатель или, точнее, сила тяги, которую он создает.

Используя этот принцип можно, теоретически, заставить взлететь (и успешно летать) предмет любой массы и формы. Главное — точно все рассчитать с точки зрения аэродинамики и других авиационных наук и правильно изготовить этот самый предмет. Упоминая о форме, я имею ввиду, главным образом, вертолет. Аппарат, совсем не похожий внешне на самолет, в воздухе держится по той же причине. Ведь каждая лопасть его главного, говоря авиационным языком, несущего (очень характерное слово, выше уже встречалось) винта — это то же крыло с аэродинамическим профилем.

Двигаясь в воздушном потоке при вращении винта, лопасть создает подъемную силу, которая, кстати, не только поднимает вертолет, но и двигает его вперед. Для этого ось вращения винта немного наклоняется (создается «перекос» винта), и появляется горизонтальная составляющая подъемной силы, исполняющая роль силы тяги самолетного двигателя. Винт как бы тянет одновременно вверх и вперед. В результате получаем уверенный и очень надежный полет такого, вобщем-то, «странного» аппарата, как вертолет. И, между прочим, достаточно красивый полет. Я неоднократно наблюдал с земли пилотаж боевого вертолета МИ-24 — зрелище просто завораживающее.

Кстати, хочу заметить, что винты самолетов с винтовыми двигателями (турбо или поршневыми) сродни вертолетным и используют тот же принцип (догадались какой?). Только подъемная сила здесь полностью «переквалифицировалась» в силу тяги. Говоря по-вертолетному, «перекос» винта — 90 градусов.

Да, авиация — это очень красиво. Слова восхищения применимы в разговоре о полете любого достаточно совершенного летательного аппарата. Будь то внешне неторопливый гигант «Мрия», трудяга-штурмовик СУ-25 или юркий спортивный пилотажник. Вся эта красота является результатом подчас многолетней кропотливой работы ученых и авиационных инженеров, аэродинамиков, двигателистов, прочнистов и т. д.

И авиационная наука на самом деле столь же сложна, сколь и интересна. Но в основе ее лежит, вобщем-то, простой физический принцип образования подъемной силы, суть которого, при желании, можно очень легко обьяснить, и который, тем не менее, помогает осуществить вековое стремление человечества к полету…

Высота полета – один из важнейших авиационных параметров. От нее зависят, в частности, скорость и расход топлива. Иногда от выбора высоты зависит и безопасность полета. Так, например, пилотам приходится менять высоту при резком изменении метеоусловий, из-за густого тумана, плотной облачности, обширного грозового фронта или турбулентной зоны.

Какой должна быть высота полета

В отличие от скорости самолета (когда чем быстрее, тем лучше), высота полета должна быть оптимальной. Причем у каждого типа самолетов она своя. Никому в голову не придет сравнивать высоты, на которых летают, к примеру, спортивные, пассажирские или многоцелевые боевые самолеты. И все же и здесь есть свои рекордсмены.


Первый рекорд высоты полета равнялся… трем метрам. Именно на такую высоту впервые поднялся самолет Wright Flyer братьев Уилбура и Орвилла Райт 17 декабря 1903 года. Спустя 74 года, 31 августа 1977 года советский летчик-испытатель Александр Федотов на истребителе МиГ-25 установил мировой рекорд высоты — 37650 метров. До настоящего времени она остается максимальной высотой полета истребителя.

На какой высоте летают пассажирские самолеты

Самолеты гражданских воздушных линий по праву составляют самую большую группу современной авиации. По данным на 2015 год в мире насчитывалось 21,6 тыс. многоместных летающих аппаратов, из которых треть – 7,4 тыс. – это крупные широкофюзеляжные пассажирские лайнеры.

При определении оптимальной высоты полета (эшелона) диспетчер или командир экипажа руководствуются следующим. Как известно, чем больше высота, тем более разряжен воздух и тем легче лететь самолету – поэтому есть смысл подняться выше. Однако крыльям самолета нужна опора, а на предельно большой высоте (например, в стратосфере) ее явно недостаточно, и машина начнет «заваливаться», а двигатели глохнуть.


Вывод напрашивается сам собой: командир (а сегодня и бортовой компьютер) выбирает «золотую середину» – идеальное соотношение силы трения и подъемной силы. В результате, у каждого типа пассажирских лайнеров (с учетом метеоусловий, технических характеристик, продолжительности и направления полета) своя оптимальная высота.

Почему самолеты летают на высоте 10000 метров?

В целом, высота полета гражданских самолетов варьируется в пределах от 10 до 12 тыс. метров при полете на запад и от 9 до 11 тыс. метров – на восток. 12 тыс. метров – это максимальная высота для пассажирских самолетов, выше которой двигатели начинают «задыхаться» от нехватки кислорода. Из-за этого высота 10000 метров считается наиболее оптимальной.


На какой высоте летают истребители

Высотные критерии истребителей несколько иные, что объясняется их предназначением: в зависимости от поставленной задачи вести боевые действия приходится на различных высотах. Техническая оснащенность современных истребителей позволяет им действовать в диапазоне от нескольких десятков метров до десятков километров.

Однако запредельные высоты у истребителей нынче «не в моде». И этому есть свое объяснение. Современные средства ПВО и ракеты истребителей класса «воздух-воздух» способны уничтожать цели на любых высотах. Поэтому главная проблема для истребителя – раньше обнаружить и уничтожить противника, а самому остаться незамеченным. Оптимальная высота полета истребителя 5-го поколения (практический потолок) – 20000 метров.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Красивоцветущие. Плодово-ягодные. Декоративно-лиственные