Красивоцветущие. Плодово-ягодные. Декоративно-лиственные

Учитель физики Ноздрина Л.Д.

Диффузия в газах, жидкостях и твердых телах.

Слайд 2

Цели и задачи урока

Основные положения МКТ;

Определение диффузии;

Особенности процесса диффузии в различных средах.

Объяснять явление диффузии на основании МКТ.

Слайд 3

  • Молекула – наименьшая частица вещества.
  • Михаил Васильевич Ломоносов в 1745 году разграничил понятия атом и молекула.
  • Молекулы состоят из атомов.
  • Атом – наименьшая частица химического элемента.
  • Слайд 4

    Три состояния вещества

    Размеры молекулы порядка 10‾¹ºм

    Повторим

    Слайд 5

    "Один опыт я ставлю выше 1000 мнений, рожденных воображением"

    М. В. Ломоносов

    • Источники физических знаний
  • Слайд 6

    Броуновское движение

    Роберт Броун в 1827 году, наблюдая под микроскопом взвесь в виде растительной пыльцой, обнаружил, что частицы находятся в непрерывном движении, описывая сложные траектории.

    Слайд 8

    Диффузия наблюдается

    • В газах
    • В жидкостях
    • В твердых телах
  • Слайд 9

    Ароматические масла, смолы широко используются в парфюмерной промышленности, лечебной ароматерапии, для церковных нужд.

    Диффузия газов в газах

    Слайд 10

    Диффузия газов в газах

    • Ароматические вещества
    • Масла
    • Смолы
    • Лепестки жасмина
    • Лепестки роз
    • Мирра
    • Ладанное дерево
  • Слайд 11

    Кого из нас не поражал запах весенней ночи? Мы могли ощущать запахи черемухи, акаций, сирени. Молекулы пахнущего вещества цветов диффундируют в воздух.

    Диффузия газов в газах

    Слайд 12

    В качестве тонизирующих культур обычно употребляют чай, кофе и какао.

    Родина чая- Китай,кофе- Африка, какао - Америка. Быстрое распространение аромата этих напитков объясняется тем, что молекулы пахучего вещества проникают между молекулами воздуха.

    Диффузия газов в газах

    Слайд 13

    Самым многочисленным способом общения насекомых осуществляется с помощью обонятельных химических средств, которые животные используют для своей защиты или привлечения внимания.

    • Передача запахов осуществляется посредством диффузии.

    Диффузия газов в газах

    Слайд 14

    • Привлекательные
    • Феромоны, гормоны.
    • Диффузия газов в газах
    • Ароматы
    • Бабочки
    • Майские жуки
    • Хорьки
    • Клопы
    • Скунсы
    • Отталкивающие
    • Репелленты
  • Слайд 15

    Леса – легкие планеты, помогающие дышать всему живому.

    Городской воздух содержит много газообразных веществ (угарный газ, углекислый газ, оксиды азота, сера), полученных в результате работы промышленного комплекса, транспорта и коммунального хозяйства.

    Процесс очищения воздуха лесом можно объяснить диффузией.

    Диффузия газов в газах

    Слайд 16

    Природный горючий газ не имеет ни цвета, ни запаха.

    Диффузия газов в газах

    За счет диффузии газ распространяется по всему помещению, образуя взрывоопасную смесь.

    Слайд 18

    Пути решения экологической проблемы, связанной с очищением воздуха:

    1) фильтры на выхлопных трубах;

    2) выращивание растений вдоль дорог и вокруг предприятий, поглощающих вредные вещества.

    Диффузия газов в газах

    • Тополь
  • Слайд 19

    Наблюдение процесса диффузии молекул воздуха и молекул нашатырного спирта (индикатором служит лакмусовая бумажка, фиксирующая наличие щелочной среды)

    НАШ ЭКСПЕРИМЕНТ

    Слайд 20

    Наблюдение растворения дыма от костра в воздухе.

    НАШ ЭКСПЕРИМЕНТ

    Слайд 21

    НАШ ЭКСПЕРИМЕНТ

    Распространение запаха освежителя воздуха в помещении.

    Слайд 22

    Пчелиный яд- это бесцветная прозрачная жидкость с ароматным запахом, обладающая высокой биологической активностью.

    Быстрое проникание пчелиного яда связано с биологическими процессами в организме

    (с движением молекул яда и их взаимодействием с межклеточной жидкостью соединительной ткани).

    ДИФФУЗИЯ ЖИДКОСТИ В ЖИДКОСТИ

    Слайд 23

    Для приготовления чая используют цветы и листочки некоторых растений: жасмина, розы, липы, душицы, мяты, чабреца и других.

    ДИФФУЗИЯ ЖИДКОСТИ В ЖИДКОСТИ

    Слайд 24

    ДИФФУЗИЯ ЖИДКОСТИ В ЖИДКОСТИ

    • Зелёный
    • Чёрный

    В твёрдом состоянии цвет чая зависит от способа обработки листьев.

    Заварка чая основана на диффузии молекул воды и красящего вещества растений.

    Слайд 25

    НАШ ЭКСПЕРИМЕНТ

    Приглашаем на чай.

    Слайд 26

    НАШ ЭКСПЕРИМЕНТ

    Сравнение скорости протекания диффузии при заваривании чая холодной и горячей водой.

    Процесс диффузии ускоряется с повышением температуры; происходит медленнее, чем в газах.

    Слайд 27

    При добавлении дольки лимона чай становится светлее.

    НАШ ЭКСПЕРИМЕНТ

    Цвет чая коричневый только в нейтральной среде (в воде).

    Слайд 28

    НАШ ЭКСПЕРИМЕНТ

    Для насыщения цвета свеклы в воде добавляется уксусная кислота.

    Слайд 29

    Запах соли, запах йода.

    Непреступны и горды,

    Рифы каменные морды

    Выставляют из воды…

    Ю. Друнина

    Ежегодно в атмосферу попадает 2 млрд. тонн солей.

    Слайд 30

    Смог - желтый туман, отравляющий воздух, которым мы дышим.

    Смог - основная причина дыхательных и сердечных болезней, ослабления иммунитета человека.

    ДИФФУЗИЯ ТВЕРДОГО ТЕЛА В ГАЗАХ

    Слайд 31

    ДИФФУЗИЯ ТВЕРДОГО ТЕЛА В ГАЗАХ

    Частицы, встречающиеся в городском воздухе.

    • Пыльца растений
    • Микроорганизмы, их споры
    • Сухой песок
    • Угольная пыль
    • Цементная пыль
    • Удобрение
    • Асбест
    • Кадмий
    • Ртуть
    • Свинец
    • Оксид железа
    • Оксид меди
    • Радиус частиц, мкм
    • 20 – 60
    • 1 - 15
    • 200 - 2000
    • 10 – 400
    • 10 – 150
    • 30 – 800
    • 10 – 200
    • 0,5-1
    • 0,1-1
    • 0,1-1
  • Слайд 32

    Как объяснить процесс соления овощей?

    Слайд 33

    ДИФФУЗИЯ ТВЕРДОГО ТЕЛА В ЖИДКОСТИ

    Соления грибов

    Слайд 34

    Соления фруктов

    ДИФФУЗИЯ ТВЕРДОГО ТЕЛА В ЖИДКОСТИ

    При засолке кристаллики соли распадаются на ионы Na и Cl в водном растворе, беспорядочно движутся и занимают промежутки между порами продуктов питания.

    Слайд 35

    Приготовление варенья и компотов.

    ДИФФУЗИЯ ТВЕРДОГО ТЕЛА В ЖИДКОСТИ

    Слайд 36

    Получение сахара из свеклы в промышленном производстве

    ДИФФУЗИЯ ТВЕРДОГО ТЕЛА В ЖИДКОСТИ

    Слайд 37

    Растворение кристаллов перманганата калия в воде.

    НАШ ЭКСПЕРИМЕНТ

    Слайд 38

    НАШ ЭКСПЕРИМЕНТ

    Растворение кристаллов сахара в горячей воде.

    Слайд 39

    Растворение таблетки «Мукалтина» в воде.

    НАШ ЭКСПЕРИМЕНТ

    Слайд 40

    Приготовление солёных огурцов, квашенной капусты, солёной рыбы и сала в домашних условиях.

    НАШ ЭКСПЕРИМЕНТ

    Слайд 41

    Для придания железным и стальным деталям твердости, износостойкости и предела прочности их поверхности подвергают диффузному насыщению углеродом (цементация)

    Слайд 42

    Английский металлург Вильям Робертс- Аустин измерял диффузию золота в свинце, помещая этот цилиндр в печь при температуре около 200 °С на 10 дней.

    Атомы золота равномерно распределялись по всему свинцовому цилиндру.

    Слайд 43

    НАШ ЭКСПЕРИМЕНТ

    Наблюдение явления диффузии молекул перманганата калия и воска.

    Слайд 44

    НАШ ЭКСПЕРИМЕНТ

    • Результат через три недели.
    • Прошло два месяца.
    • Молекулы твёрдых тел диффундируют медленнее всего.
  • Слайд 45

    • Причина диффузии - беспорядочное движение молекул.
    • Скорость диффузии зависит от того, в каком агрегатном состоянии находятся соприкасающиеся тела.
    • Диффузия быстро протекает в газах, медленнее в жидкостях и очень медленно в твердых телах.
    • Процесс диффузии ускоряется с повышением температуры, с уменьшением вязкости среды и размеров частиц.
  • Слайд 46

    1. Какой рисунок наиболее правильно показывает каплю воды в микроскопе при сильном увеличении?

    2. Имея модели частиц двух веществ, покажите, что происходит в веществе при их самопроизвольном смешивании.

    3. Выберите рисунок, на котором направление стрелок правильно указывает направление движения двух частиц в веществе.

    Опишите, как движутся частицы в веществе.

    С какими танцами или мелодиями можно сравнить движение частиц пальмы, растущей в Африке, и частиц кедра, растущего в Сибири?

    Слайд 47

    Все знают, как полезен репчатый лук. Но при его разрезании мы проливаем слезы. Объясните почему?

    Это объясняется явлением диффузии.Причина в летучем веществе лакриматоре, вызывающем слёзы. Оно растворяется в жидкости слизистой оболочки глаза, выделяя серную кислоту, которая и раздражает слизистую оболочку глаза.

    Слайд 48

    Средний уровень: 1. В каком рассоле – горячем или холодном – быстрее засолятся огурцы?

    2. Почему ткань, окрашенную недоброкачественной краской, нельзя в мокром состоянии держать в соприкосновении со светлым бельем?

    Достаточный уровень: 1. Почему дым от костра, поднимаясь вверх, быстро перестает быть видимым даже в безветренную погоду?

    2. Будут ли распространяться запахи в герметично закрытом подвальном помещении, где совершенно нет сквозняков?

    Высокий уровень: 1. Открытый сосуд с эфиром уравновесили на весах и оставили в покое. Через некоторое время равновесие весов нарушилось. Почему?

    2. Какое значение имеет диффузия для процессов дыхания человека и животных?

    Слайд 49

    1. Параграф №9, вопросы к параграфу;

    2. Экспериментальное задание (описать явления диффузии, наблюдаемые дома).

    3. Ответить письменно на вопрос:

    Почему сладкий сироп приобретает со временем вкус фруктов? (средний уровень)

    Почему соленая сельдь, после того как ее оставили на некоторое время в воде, делается менее соленой? (достаточный уровень)

    Почему при склеивании и паянии применяют жидкий клей и расплавленный припой? (высокий уровень)

    Слайд 50

    Слайд 51

    1. СемкеА.И. «Нестандартные задачи по физике», Ярославль: Академия развития,2007.

    2. Шустова Л.В., Шустов С.Б. «Химические основы экологии».М.:Просвещение,1995.

    3. Лукашик В.И. Задачник по физике 7-8кл. М.: Просвещение,2002.

    4. Кац Ц.Б. Биофизика на уроках физики. М.: Просвещение,1998.

    5. Энциклопедия Физика. М.: Аванта +,1999.

    6. Богданов К.Ю. Физик в гостях у биолога. М.: Наука,1986.

    7. Енохович А.С. Справочник по физике. М.: Просвещение, 1990.

    8. Ольгин О. И. Опыты без взрывов. М.: Химия,1986.

    9. Ковтунович М.Г. «Домашний эксперимент по физике 7-11 классы». М.: Гуманитарный издательский центр, 2007.

    10. Internet- ресурсы.

    Литература

    Посмотреть все слайды

    Несмотря на то, что для твердого тела характерно упорядоченное расположение атомов в кристаллической решетке, перемещение атомов возможно и в нем. Тепловые движения, которые в основном имеют характер малых колебаний, в некоторых случаях приводят к тому, что атомы вовсе покидают свои места в решетке. О возможности таких срывов атомов свидетельствует уже тот факт, что твердые тела могут испаряться. Правда, при испарении отрыв атомов происходит в поверхностном слое, но нет оснований утверждать, что такой отрыв невозможен и внутри тела.

    Именно благодаря тому, что атомы покидают свои места в узлах решетки, возникают некоторые дефекты в кристаллах -такие, как дефекты типа Шоттки и Френкеля. С этими срывами атомов и их последующим перемещением в кристалле связана и диффузия в твердых телах.

    Так же, как в газах, частицы в твердых телах имеют различные энергии тепловых движений. И при любой температуре имеется определенная часть атомов, энергия которых значительно превосходит среднюю и достаточно велика для того, чтобы они могли покинуть свое место в решетке, и перейти в новое положение. Чем выше температура, тем таких атомов больше, и поэтому коэффициент диффузии с повышением температуры быстро возрастает (по экспоненциальному закону). Но так как число атомов с достаточно большой энергией всегда мало (если температура много ниже температуры плавления), то процесс диффузии в твердом теле оказывается еще более медленным процессом, чем в газах и жидкостях. Например, коэффициент диффузии меди в золото при

    300 °С равен Для сравнения укажем, что при диффузии водного раствора метилового спирта в воду а диффузия аргона в гелий идет с Тем не менее диффузия в твердых телах играет большую роль в целом ряде процессов. Она наблюдается как в однокомпонентном (в этом случае говорят о самодиффузни), так и в многокомпонентных веществах, в моно- и в поликристаллах.

    Опыт (в частности, исследования с помощью так называемых меченых атомов) показывает, что диффузия в твердых телах осуществляется главным образом следующими тремя способами:

    1. Соседние атомы в решетке обмениваются местами в решетке, как это показано на рис. 198. Обмен этот может, например, явиться следствием поворота участвующей в ней пары атомов вокруг средней точки.

    2. Атом, находящийся на «своем» месте в узле решетки, покидает его и располагается в междоузлии, а затем мигрирует в междоузлиях (рис. 199).

    3. Атомы из узлов решетки переходят в незанятые узлы, так называемые вакансии (рис. 200). Этот последний процесс возможен только в дефектных кристаллах, так как вакансии являются, конечно, дефектами кристалла. Очевидно, что переход атомов на вакантные места эквивалентен перемещению самих вакансий в направлении, обратном направлению движения атомов.

    Наиболее важную роль играет, по-видимому, последний механизм диффузии. Для его осуществления в твердом теле должен существовать градиент плотности вакансий, так что атомы (а значит и вакансии) чаще перемещаются в одном направлении, чем в другом. В поликристаллах важную роль играет процесс заполнения вакансий на границах кристалликов (зерен). По-видимому, в процессе создания вакансий, без которых невозможна диффузия, важную роль играют дислокации.

    При экспериментальном изучении диффузии в твердых телах исследуемые вещества приводятся в надежный контакт друг с другом и затем длительное время выдерживаются при той или иной температуре опыта. После такой выдержки снимаются последовательно тонкие слои, перпендикулярные к направлению диффузии, и исследуются концентрации продиффундировавших веществ в зависимости от расстояния до места контакта.

    В последнее время широко используются искусственные радиоактивные вещества, присутствие которых легко обнаруживается по их излучению.

    Этот метод (метод меченых атомов) позволяет исследовать и явление самодиффузии, т. е. диффузии в твердом теле атомов самого этого тела.

    Общий закон диффузии в твердых телах - такой же, как в газах и жидкостях. Это - закон Фика, о котором мы не раз упоминали.

    Что касается коэффициента диффузии то выражение для него можно получить из соображений, сходных с теми, которые были приведены на стр. 318 в связи с вопросом о диффузии в жидкостях. Ведь диффузия в твердом теле тоже осуществляется скачками атомов из их положений равновесия в узлах кристаллической решетки. Но теперь о дальности скачка можно вполне определенно сказать, что она равна постоянной решетки а.

    Необходимо, однако, иметь в виду, что при вэкансионном механизме диффузии атом из узла решетки может совершить скачок только в том случае, - если соседний узел пустует, если он представляет собой вакансию, как это показано на рис. 200. Но даже и при таком соседстве атому необходима добавочная энергия чтобы скачок в вакансию состоялся. Ведь в узле решетки потенциальная энергия атома минимальна. Поэтому любое смещение атома из узла, включая и смещение в соседнюю вакансию, требует добавочную энергию, которую он с некоторой вероятностью может получить в результате флуктуации. Эта вероятность, как всегда, определяется законом Больцмана:

    Здесь -энергия, необходимая для скачка из узла решетки, энергия перемещения атома в вакансию.

    По соображениям, приведенным на стр. 318, коэффициент самодиффузии в твердом теле может быть записан в виде:

    где а - постоянная решетки и среднее время пребывания атома в узле решетки. Это время, очевидно, тем меньше, чем больше вероятность образования вакансии рядом с атомом и чем больше вероятность

    того, что атом получит энергию перемещения На стр. 319 мы видели, что вероятность образования вакансии равна Теперь мы видим, что вероятность того, что атом получит энергию равна Поэтому выражение для коэффициента диффузии может) быть записано в виде:

    Множитель (так называемый предэкспоненциальный множитель) - постоянная, характерная для данного вещества. Величина равная сумме энергии образования вакансии и энергии перемещения атома в вакансию, называется энергией активации диффузии и тоже является величиной, характерной для вещества.

    Коэффициент диффузии в твердых телах очень мал. Для золота, например, при комнатной температуре он порядка Даже вблизи температуры плавления золота он достигает значения лишь в Это показывает, как сильно зависит коэффициент диффузии от температуры. 1

    Малость коэффициента диффузии в твердых телах объясняется тем, что для того, чтобы диффузионный скачок атома в вакансию состоялся, необходимо, чтобы практически одновременно произошли два, вообще говоря, маловероятных события: чтобы рядом с атомом образовалась вакансия и чтобы сам атом получил в результате флуктуации энергию, достаточную для скачка.

    При других механизмах диффузии, при диффузии одних веществ в другие, коэффициент диффузии вычисляется иначе. Об этом читатель узнает из специальных курсов. Но во всех случаях коэффициенты диффузии по абсолютному значению малы. Так, например, коэффициент диффузии серы в железо даже при температуре, близкой к равен приблизительно Но несмотря на малость коэффициентов диффузии в твердых телах, роль диффузии в твердых телах очень велика. Именно диффузия обеспечивает такие явления и процессы в твердых телах, как отжиг для устранения неоднородностей в сплавах, насыщение поверхностей деталей углеродом, азотом и т. д., спекание порошков и другие процессы обработки металлов.

    Диффузия в газах,жидкостях и твердых телах Подготовила: ученица 10 «а» Корякина Анастасия Учитель: Малышева В.И. МКОУ «СОШ №1 пос. Теплое»

    Цель работы Узнать что такое диффузия Как она воздействует на окружающую среду Узнать про диффузию в газах и жидкостях Какую пользу и вред приносит диффузия

    Движение частиц вещества Мельчайшие частицы любого вещества, будь то газ, жидкость или твердое тело, находятся в постоянном беспорядочном движении. Причем чем быстрее движутся частицы, тем выше температура вещества. Правильность этого предположения подтверждает ряд явлений. Одно из них - диффузия - явление, когда вещества смешиваются сами собой.

    Диффузия в жидкостях В жидкостях диффузия протекает медленнее, чем в газах, но если мы нагреем воду, то процесс диффузии ускорится. На принципе диффузии основано перемешивание пресной воды с соленой при в падении рек в моря.

    Диффузия применяется и в консервировании

    Диффузия в газах Диффузия в газах происходит быстрее, чем в жидкостях, потому что расстояние между молекулами газа заметно больше, и молекулы его могут перемещаться более свободно.

    Примером диффузии в газах является распространение запахов в воздухе, но запах распространяется не мгновенно, а спустя некоторое время. Так происходит, потому что движение молекул пахучего вещества в определенном направлении мешает движение молекул воздуха

    Деревья выделяют кислород и поглощают углекислый газ с помощью диффузии. Плотоядные животные находят своих жертв тоже благодаря диффузии. Результатом диффузии может быть выравнивание температуры в помещении. Благодаря явлению диффузии нижний слой атмосферы – тропосфера – состоит из смеси газов: азота, кислорода, углекислого газа и паров воды. При отсутствии диффузии произошло бы расслоение под действием силы тяжести: внизу оказался бы слой тяжелого углекислого газа, над ним кислород, выше азот, инертные газы.

    Диффузия в газах Газы. Вот на таком расстоянии молекулы газа находятся друг от друга.

    Диффузия в жидкостях Жидкости. На таком расстоянии молекулы жидкости находятся друг от друга.

    Диффузия в твердых телах Твердые тела. Расстоянии молекул между твердыми телами.

    Вред диффузии Вследствие явления диффузии воздух загрязняется отходами разных фабрик, из-за него вредные отходы жизнедеятельности человека проникают в почву, в воду, а затем оказывают вредное влияние на жизнь и функционирование животных и растений.

    Вред диффузии К сожалению, в результате развития человеческой цивилизации оказывается негативное влияние на природу и процессы, протекающие в ней. Процесс диффузии играет большую роль в загрязнении рек, морей и океанов. В некоторых медицинских исследованиях была показана связь заболеваемости органов дыхания и верхних дыхательных путей с состоянием воздуха.

    Вывод Диффузия имеет большое значение в природе, но это явление также вредно в отношении загрязнения окружающей среды.

    Среди многочисленных явлений в физике процесс диффузии относится к одним из самых простых и понятных. Ведь каждое утро, готовя себе ароматный чай или кофе, человек имеет возможность наблюдать эту реакцию на практике. Давайте узнаем больше об этом процессе и условиях его протекания в разных агрегатных состояниях.

    Что такое диффузия

    Данным словом именуется проникновение молекул или атомов одного вещества между аналогичными структурными единицами другого. При этом концентрация проникающего соединений выравнивается.

    Впервые этот процесс был подробно описан немецким ученым Адольфом Фиком в 1855 г.

    Название данного термина было образовано от латинского diffusio (взаимодействие, рассеивание, распространение).

    Диффузия в жидкости

    Рассматриваемый процесс может происходить с веществами во всех трех агрегатных состояниях: газообразном, жидком и твердом. Чтобы отыскать практические примеры этого, стоит просто заглянуть на кухню.

    Варящийся на плите борщ - это один из них. Под действием температуры молекулы глюкозинбетанина (вещества, благодаря которому свекла обладает таким насыщенным алым цветом) равномерно реагируют с молекулами воды, придавая ей неповторимый бордовый оттенок. Данный случай - это в жидкостях.

    Помимо борща, данный процесс можно увидеть и в стакане чая или кофе. Оба эти напитка имеют столь равномерный насыщенный оттенок благодаря тому, что заварка или частички кофе, растворяясь в воде, равномерно распространяются между ее молекулами, окрашивая ее. На этом же принципе построено действие всех популярных растворимых напитков девяностых: Yupi, Invite, Zuko.

    Взаимопроникновение газов

    Атомы и молекулы, переносящие запах, находятся в активном движении и вследствие него перемешиваются с частицами, уже содержащимися в воздухе, и довольно равномерно рассеиваются в объеме помещения.

    Это проявление диффузии в газах. Стоит отметить, что само вдыхание воздуха тоже относится к рассматриваемому процессу, как и аппетитный запах свежеприготовленного борща на кухне.

    Диффузия в твердых телах

    Кухонный стол, на котором стоят цветы, застелен скатертью яркого желтого цвета. Подобный оттенок она получила благодаря способности диффузии проходить в твердых телах.

    Сам процесс придания полотну какого-то равномерного оттенка проходит в несколько этапов следующим образом.

    1. Частички желтого пигмента диффундировали в красильной емкости по направлению к волокнистому материалу.
    2. Далее они были впитаны внешней поверхностью окрашиваемой ткани.
    3. Следующим шагом была снова диффузия красителя, но на этот раз уже внутрь волокон полотна.
    4. В финале ткань зафиксировала частички пигмента, таким образом окрасившись.

    Диффундирование газов в металлах

    Обычно, говоря об этом процессе, рассматривают взаимодействия веществ в одинаковых агрегатных состояниях. Например, диффузия в твердых телах, твердых веществах. Для доказательства этого явления проводится опыт с двумя прижатыми друг к другу металлическими пластинами (золото и свинец). Взаимопроникновение их молекул происходит довольно долго (один миллиметр за пять лет). Этот процесс используется для изготовления необычных украшений.

    Однако диффундировать способны и соединения в разных агрегатных состояниях. К примеру, существует диффузия газов в твердых телах.

    В процессе экспериментов было доказано, что подобный процесс протекает в атомарном состоянии. Для его активации, как правило, нужно значительно повышение температуры и давления.

    Примером такой газовой диффузии в твердых телах является водородная коррозия. Она проявляется в ситуациях, когда возникшие в процессе какой-нибудь химической реакции атомы водорода (Н 2) под действием высоких температур (от 200 до 650 градусов Цельсия) проникают между структурными частицами металла.

    Помимо водорода, в твердых телах диффузия кислорода и других газов также способна происходить. Этот незаметный глазу процесс приносит немало вреда, ведь из-за него могут рушиться металлические сооружения.

    Диффундирование жидкостей в металлах

    Однако не только молекулы газов могут проникать в твердые тела, но и жидкостей. Как и в случае с водородом, чаще всего такой процесс приводит к коррозии (если речь идет о металлах).

    Классическим примером диффузии жидкости в твердых телах является коррозия металлов под воздействием воды (Н 2 О) или растворов электролитов. Для большинства этот процесс более знаком под названием ржавления. В отличие от водородной коррозии, на практике с ним приходится сталкиваться значительно чаще.

    Условия ускорения диффузии. Коэффициент диффузии

    Разобравшись с тем, в каких веществах может происходить рассматриваемый процесс, стоит узнать об условиях его протекания.

    В первую очередь быстрота диффузии зависит от того, в каком агрегатном состоянии пребывают взаимодействующие вещества. Чем больше в котором происходит реакция, тем медленнее ее скорость.

    В связи с этим диффузия в жидкостях и газах всегда будет проходить более активно, нежели в твердых телах.

    К примеру, если кристаллы перманганата калия KMnO 4 (марганцовка) бросить в воду, они в течение нескольких минут придадут ей красивый малиновый цвет. Однако если посыпать кристаллами KMnO 4 кусочек льда и положить все это в морозилку, по прошествии нескольких часов перманганат калия так и не сможет полноценно окрасить замороженную Н 2 О.

    Из предыдущего примера можно сделать еще один вывод об условиях диффузии. Помимо агрегатного состояния, на скорость взаимопроникновения частиц влияет также и температура.

    Чтобы рассмотреть зависимость от нее рассматриваемого процесса, стоит узнать о таком понятии, как коэффициент диффузии. Так называется количественная характеристика ее скорости.

    В большинстве формул она обозначается при помощи большой латинской литеры D и в системе СИ измеряется в квадратных метрах на секунду (м²/с), иногда - в сантиметрах за секунду (см 2 /м).

    Коэффициент диффузии равен количеству вещества, рассеивающегося через единицу поверхности на протяжении единицы времени, при условии, что разность плотностей на обеих поверхностях (расположенных на расстоянии равном единице длины) равна единице. Критерии, определяющие D, - это свойства вещества, в котором происходит сам процесс рассеивания частиц, и их тип.

    Зависимость коэффициента от температуры можно описать при помощи уравнения Аррениуса: D = D 0exp (-E/TR).

    В рассмотренной формуле Е - минимальная энергия, необходимая для активации процесса; Т - температура (измеряется по Кельвину, а не Цельсию); R - постоянная газовая, характерная для идеального газа.

    Помимо всего вышеперечисленного, на скорость диффузии в твердых телах, жидкости в газах влияет давление и излучение (индукционное или высокочастотное). Кроме того, многое зависит от наличия катализирующего вещества, часто именно оно выступает в роли пускового механизма для начала активного рассеивания частиц.

    Уравнение диффузии

    Данное явление - частный вид уравнения дифференциального при частных производных.

    Его цель - отыскать зависимость концентрации вещества от размеров и координат пространства (в котором оно диффундирует), а также времени. При этом заданный коэффициент характеризует проницаемость среды для реакции.

    Чаще всего уравнение диффузии записывают следующим образом: ∂φ (r,t)/∂t = ∇ x .

    В нем φ (t и r) — плотность рассеивающегося вещества в точке r во время t. D (φ, r) — диффузии обобщенный коэффициент при плотности φ в точке r.

    ∇ — векторный дифференциальный оператор, компоненты которого по координатам относятся к частным производным.

    Когда коэффициент диффузии зависим от плотности, уравнение является нелинейным. Когда нет — линейным.

    Рассмотрев определение диффузии и особенности данного процесса в разных средах, можно отметить, что он имеет как положительные, так и отрицательные стороны.



    Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
  • ПОДЕЛИТЬСЯ:
    Красивоцветущие. Плодово-ягодные. Декоративно-лиственные