Красивоцветущие. Плодово-ягодные. Декоративно-лиственные

ШУМ И МЕТОДЫ БОРЬБЫ С НИМ

Цель работы : ознакомление с характеристиками шума и особенностями его воздействия на организм человека, с особенностями измерения и нормирования параметров шума, а также с методами борьбы с шумом.

Теоретическая часть

1. Звук и его характеристики

Механические колебания частиц упругой среды в диапазоне частот 16 – 20000 Гц воспринимаются ухом человека и называются звуковыми волнами. Колебания среды с частотами ниже 16 Гц называют инфразвуком, а колебания с частотами выше 20000 Гц – ультразвуком. Длина звуковой волны  связана с частотой f и скоростью звука с зависимостью  = c / f .

Нестационарное состояние среды при распространении звуковой волны характеризуется звуковым давлением, под которым понимают среднеквадратическое значение превышения давления в среде при распространении звуковой волны над давлением в невозмущённой среде, измеряемое в паскалях (Па).

Перенос энергии плоской звуковой волной через единицу поверхности, перпендикулярную к направлению распространения звуковой волны характеризуют интенсивностью звука (плотностью потока звуковой мощности), Вт/м 2 : I = P 2 / (ρ ∙ c ),

где P – звуковое давление, Па; – удельная плотность среды, г/м 3 ;

c – скорость распространения звуковой волны в данной среде, м/с.

Скорость переноса энергии равна скорости распространения звуковой волны.

Органы слуха человека способны воспринимать звуковые колебания в очень широких диапазонах изменения интенсивностей и звуковых давлений. Например, при частоте звука в 1 кГц порогу чувствительности “среднего” человеческого уха (порог слышимости) соответствуют значения P 0 = 2·10 –5 Па; I 0 = 10 –12 Вт/м 2 , а порогу болевого ощущения (превышение которого уже может привести к физическому повреждению органов слуха) соответствуют значения P б = 20 Па и I б = 1 Вт/м 2 . Кроме того, в соответствии с законом Вебера-Фехнера раздражающее человеческое ухо действие звука пропорционально логарифму звукового давления. Поэтому на практике обычно вместо абсолютных значений интенсивности и звукового давления используют их логарифмические уровни, выраженные в децибелах (дБ):

L I = 10lg (I/I 0 ) , L P = 20lg (P/P 0 ) ; (1)

где I 0 = 10 –12 Вт/м 2 и P 0 = 2·10 –5 Па – стандартные пороговые значения интенсивности и звукового давления. Для нормальных атмосферных условий можно считать, что L I = L P = L .

Если звук в данной точке складывается из n составляющих от нескольких источников с уровнями звуковых давлений L i , то результирующий уровень звукового давления определяется по формуле:

где L i – уровень звукового давления i - й составляющей в расчетной точке (дБ).

В случае n одинаковых составляющих звука L i = L суммарный уровень составляет:

L  = L + 10 lg (n ) . (3)

Из формул (2) и (3) следует, что если уровень одного из источников звука превышает уровень другого более чем на 10 дБ, то звуком более слабого источника практически можно пренебречь, так как его вклад в общий уровень будет менее 0,5 дБ. Таким образом, при борьбе с шумом в первую очередь необходимо заглушать наиболее интенсивные источники шума. Кроме того, при наличии большого числа одинаковых источников шума устранение одного или двух из них очень слабо влияет на общее снижение уровня шума.

Характеристикой источника шума являются звуковая мощность и её уровень. Звуковая мощность W , Вт, – это общее количество звуковой энергии, излучаемой источником шума в единицу времени. Если энергия излучается по всем направлениям равномерно и затухание звука в воздухе мало, то при интенсивности I на расстоянии r от источника шума его звуковая мощность может быть определена по формуле

W = 4  r 2 I . По аналогии с логарифмическими уровнями интенсивности и звукового давления введены логарифмические уровни звуковой мощности (дБ) L W = 10 lg (W / W 0 ) , где W 0 = 10 -12 – пороговое значение звуковой мощности, Вт.

Спектр шума показывает распределение энергии шума в диапазоне звуковых частот и характеризуется уровнями звукового давления или интенсивности (для источников звука – уровнем звуковой мощности) в анализируемых частотных полосах, в качестве которых, как правило, используются октавные и третьоктавные частотные полосы, характеризуемые нижней f н и верхней f в граничными частотами и среднегеометрической частотой f сг = (f н ∙ f в ) 1/2 .

Октавная полоса звуковых частот характеризуется отношением её граничных частот, удовлетворяющим условию f в / f н = 2, а для третьоктавной – условию f в / f н = 2 1/3 ≈ 1,26.

Каждая октавная полоса частот включает три третьоктавные полосы, причем среднегеометрическая частота центральной из них совпадает со среднегеометрической частотой октавной полосы. Среднегеометрические частоты f сг октавных полос определяются стандартным двоичным рядом, включающим 9 значений: 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000 Гц.

2. Особенности субъективного восприятия зв у ка

Восприятие звука человеческим ухом очень сильно и нелинейно зависит от его частоты. Особенности субъективного восприятия звука наиболее удобно иллюстрируются графически с помощью кривых равной громкости (рис. 1). Каждая из семейства кривых на рис. 1 характеризует уровни звукового давления на различных частотах, соответствующие одинаковой громкости восприятия звука и уровню громкости L N (фон).

Рис. 1. Кривые равной громкости

Уровень громкости L N численно равен уровню звукового давления на частоте 1 кГц. На других частотах для обеспечения такой же громкости звука требуется устанавливать другие уровни звукового давления. Из рис. 1 следует, что вид кривой равной громкости и соответствующая ей характеристика слуховой чувствительности зависят от значения L N .

При расчетах и измерениях частотную характеристику органа слуха принято моделировать частотной характеристикой корректирующего фильтра А . Характеристика А является стандартной и задается системой поправок А i = φ(f сг i ), где f сг i – среднегеометрическая частота i -й октавной полосы.

Для соответствия объективных результатов измерений уровня звукового давления субъективному восприятию громкости звука вводят понятие уровня звука. Уровень звука L A (дБА) – результирующий уровень звукового давления шума, прошедшего математическую или физическую обработку в корректирующем фильтре с характеристикой А . Значение уровня звука приближенно соответствует субъективному восприятию громкости шума независимо от его спектра. Уровень звука вычисляется с учетом поправок А i по формуле (2), в которую вместо L i следует подставить ( L i + А i ). Отрицательные значения А i характеризуют ухудшение слуховой чувствительности по сравнению со слуховой чувствительностью на частоте 1000 Гц.

3. Характеристики шума и его нормирование

По характеру спектра шумы подразделяют на широкополосные (с непрерывным спектром шириной более одной октавы) и тональные , в спектре которых имеются выраженные дискретные тона, измеренные в третьоктавных полосах частот с превышением уровня звукового давления над соседними полосами не менее чем на 10 дБ.

По временным характеристикам шумы делят на постоянные , уровень звука которых в течение 8-часового рабочего дня изменяется не более чем на 5 дБА при измерениях на временной характеристике “медленно” шумомера, и непостоянные , не удовлетворяющие данному условию.

Непостоянные шумы , в свою очередь, делятся на следующие виды:

  • колеблющиеся во времени шумы , уровень звука которых непрерывно изменяется во времени;
  • прерывистые шумы , уровень звука которых ступенчато изменяется (на 5 дБА и более), причём длительность интервалов, в течение которых уровень остается постоянным, составляет не менее 1 с;
  • импульсные шумы , состоящие из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с, при этом уровни звука в дБА и дБА( I ), измеренные соответственно на временных характеристиках “медленно” и “импульс” шумомера, отличаются не менее чем на 7 дБА.

Для оценки непостоянных шумов введено понятие эквивалентного уровня звука L Аэ (по энергии воздействия), выражаемого в дБА и определяемого по формуле L Аэ = 10 lg (I АС / I 0 ), где I АС – среднее значение интенсивности непостоянного шума, скорректированного по характеристике А , на интервале времени контроля Т .

Текущие значения уровня звука L А и интенсивности I А связаны соотношением L А (t ) = 10 lg (I А (t ) / I 0 ), I АС / I 0 = (1/Т)(I А (t ) / I 0 ) dt , поэтому

(4)

Значения L Аэ могут вычисляться как автоматически интегрирующими шумомерами, так и вручную по результатам измерений уровней звука через каждые 5 с в течение наиболее шумных 30 мин.

Нормируемыми параметрами шума являются:

  • для постоянного шума – уровни звукового давления L P (дБ) в октавных полосах частот со среднегеометрическими частотами 31.5; 63; 125; 250; 500; 1000; 2000; 4000 и 8000 Гц; кроме того, для ориентировочной оценки постоянного широкополосного шума на рабочих местах допускается использовать уровень звука L A , выраженный в дБА;
  • для непостоянного шума (кроме импульсного) – эквивалентный уровень звука L Аэ (по энергии воздействия), выраженный в дБА, представляет собой уровень звука такого постоянного широкополосного шума, который воздействует на ухо с такой же звуковой энергией, как и реальный, меняющийся во времени шум за тот же период времени;
  • для импульсного шума – эквивалентный уровень звука L Аэ , выраженный в дБА, и максимальный уровень звука L А max в дБА(I ), измеренный на временной характеристике “импульс” шумомера.

Допустимые значения параметров шума регламентируются СН 2.2.4 / 2.1.8.562-96 « Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки ». Допустимые значения параметров шума на рабочих местах устанавливаются в зависимости от вида выполняемой работы и характера шума. Для работ, связанных с творческой, научной деятельностью, обучением, программированием, предусмотрены наиболее низкие уровни шума.

Ниже приведены характерные виды работ, различаемые при нормировании, с указанием порядкового номера:

1) творческая, научная работа, обучение, проектирование, конструирование, разработка, программирование;

2) административно-управленческая работа, требующая сосредоточенности работа, измерительная и аналитическая работа в лаборатории;

3) диспетчерская работа, требующая речевой связи по телефону, в залах обработки информации на ЭВМ, на участках точной сборки, в машинописных бюро;

4) работа в помещениях для размещения шумных агрегатов ЭВМ, связанная с процессами наблюдения и дистанционного управления без речевой связи по телефону, в лабораториях с шумным оборудованием;

5) все виды работ за исключением перечисленных в пп. 1 – 4.

Для широкополосного шума на рабочих местах в табл. 1 приведены допустимые уровни звукового давления L P в октавных полосах частот со среднегеометрическими частотами f сг , уровни звука L A (для субъективной оценки громкости постоянных шумов) и эквивалентные уровни звука L Аэ (для оценки непостоянных шумов).

Таблица 1

Допустимые уровни шума

вида работы

Уровни звукового давления L P (дБ) в октавных полосах частот со среднегеометрическими частотами, Гц

Уровни звука L А , дБА

31,5

1000

2000

4000

8000

Д ля тонального и импульсного шумов , а также для шумов, создаваемых в помещениях установками кондиционирования и вентиляции, допустимые уровни должны быть на 5 дБ ниже указанных в табл.1 (при измерениях на характеристике “медленно” шумомера).

Для колеблющегося во времени и прерывистого шумов максимальный уровень звука не должен превышать 110 дБА.

Для импульсного шума максимальный уровень звука, измеренный на характеристике “импульс” шумомера, не должен превышать 125 дБА ( I ).

В любом случае запрещается даже кратковременное пребывание людей в зонах с уровнями звукового давления свыше 135 дБ в любой октавной полосе частот. Зоны с уровнем звука свыше 85 дБА должны быть обозначены знаками безопасности; работающих в таких зонах следует снабжать средствами индивидуальной защиты.

4. Методы и средства борьбы с шумом

Для уменьшения шума применяют следующие основные методы: устранение причин или ослабление шума в источнике возникновения, изменение направленности излучения и экранирование шума, снижение шума на пути его распространения, акустическая обработка помещений, архитектурно-планировочные и строительно-акустические методы.

Для защиты людей от воздействия шума используют средства коллективной защиты (СКЗ) и средства индивидуальной защиты (СИЗ). Предотвращение неблагоприятного воздействия шума обеспечивается также лечебно-профилактическими и организационными мероприятиями, включающими, например, медосмотры, правильный выбор режимов труда и отдыха, сокращение времени пребывания в условиях промышленного шума.

Снижение шума непосредственно в источнике осуществляется на основе выявления конкретных причин шумов и анализа их характера. Шум технологического оборудования чаще имеет механическое и аэродинамическое происхождение. Для снижения механического шума предусматривают тщательное уравновешивание движущихся деталей агрегатов, заменяют подшипники качения подшипниками скольжения, обеспечивают высокую точность изготовления узлов машин и их сборки, заключают в масляные ванны вибрирующие детали, заменяют металлические детали пластмассовыми. Для уменьшения уровней аэродинамического шума в источнике необходимо в первую очередь снижать скорость обтекания деталей воздушными и газовыми потоками и струями, а также вихреобразование путем использования обтекаемых элементов.

Большинство источников шума излучают звуковую энергию в пространстве неравномерно. Установки с направленным излучением следует ориентировать так, чтобы максимум излучаемого шума был направлен в сторону, противоположную рабочему месту или жилому дому.

Экранирование шума заключается в создании звуковой тени за экраном, располагающимся между защищаемой зоной и источником шума. Экраны наиболее эффективны для снижения шума высоких и средних частот и плохо снижают низкочастотный шум, который за счет эффекта дифракции легко огибает экраны.

В качестве экранов, защищающих рабочие места от шума обслуживаемых агрегатов, используют сплошные металлические или железобетонные щиты, облицованные со стороны источника шума звукопоглощающим материалом. Линейные размеры экрана должны превосходить линейные размеры источников шума не менее чем в 2 – 3 раза. Акустические экраны, как правило, применяются в сочетании со звукопоглощающей облицовкой помещения, так как экран снижает только прямой звук, а не отраженный.

Способ звукоизоляции с помощью ограждений заключается в том, что большая часть падающей на него звуковой энергии отражае т ся и лишь незначительная её часть проникает через ограждение. В сл у чае массивного звукоизолирующего плоского ограждения бесконе ч ных размеров толщиной, много меньшей длины продольной волны, осла б ление уровня звукового давления на данной частоте подчиняется так называемому закону массы и находится по форм у ле:

L P осл = 20 lg (mf ) – 47,5 , (5)

где f – частота звука, Гц; m – поверхностная плотность, т.е. масса одного квадратного метра ограждения, кг/м 2 . Из формулы (5) следует, что при удвоении частоты или массы звукоизоляция возрастает на 6 дБ. В случае реальных ограждений конечных размеров закон массы справедлив лишь в определённом диапазоне частот, обычно от десятков Гц до нескольких кГц.

Требуемое для данной октавной полосы частот (с соответствующей среднегеометрической частотой f сг ) ослабление уровня звукового давления определяется разностью:

L P треб (f сг ) = L P изм (f сг ) – L P норм (f сг ) , (6)

где L P изм (f сг ) – уровень звукового давления, измеренный в соответствующей октавной полосе частот; L P норм (f сг ) – нормативный уровень звукового давления.

В качестве звукоизолирующих материалов используют листы из оцинкованной стали, алюминия и его сплавов, древесноволокнистые плиты, фанеру и др. Наиболее эффективными являются панели, состоящие из чередующихся слоёв звукоизолирующих и звукопоглощающих материалов.

В качестве звукоизолирующих преград используются также стены, перегородки, окна, двери, перекрытия из различных строительных материалов. Например, дверь обеспечивает звукоизоляцию 20 дБ, окно – 30 дБ, межкомнатная перегородка – 40 дБ, межквартирная перегородка – 50 дБ.

Для защиты персонала от шума устраивают звукоизолированные кабины наблюдения и дистанционного управления, а наиболее шумные агрегаты закрывают звукоизолирующими кожухами. Кожухи выполняют обычно из стали, их внутренние поверхности облицовывают звукопоглощающим материалом для поглощения энергии шума внутри кожуха. Уменьшить шум в помещении можно также путём снижения уровней отраженного звука с использованием метода звукопоглощения. В этом случае обычно применяют звукопоглощающие облицовки и при необходимости штучные (объёмные) поглотители, подвешенные к потолку.

К звукопоглощающим относятся материалы, у которых коэффициент звукопоглощения (отношение интенсивностей поглощенного и падающего звуков) на средних частотах превышает 0.2. Процесс поглощения звука происходит за счёт перехода механической энергии колеблющихся частиц воздуха в тепловую энергию молекул звукопоглощающего материала, поэтому в качестве звукопоглощающих материалов используют ультратонкое стекловолокно, капроновое волокно, минеральную вату, пористые жесткие плиты.

Наибольшая эффективность достигается при облицовке не менее 60 % общей площади стен и потолка помещения. При этом можно обеспечить снижение шума на 6 – 8 дБ в зоне отраженного звука (вдали от источника) и на 2 – 3 дБ вблизи источника шума.

При строительстве крупных объектов используются архитектурно-планировочные и строительно-акустические методы борьбы с шумом

Если средства коллективной защиты от шума не обеспечивают требуемой защиты или их применение невозможно или нецелесообразно, то применяют средства индивидуальной защиты (СИЗ). К ним относятся противошумные вкладыши, наушники, а также шлемы и костюмы (используемые при уровнях звука выше 120 дБА). Каждое СИЗ характеризуется частотной характеристикой ослабления уровней звукового давления. Наиболее эффективно ослабляются высокие частоты звукового диапазона. Применение СИЗ следует рассматривать как крайнюю меру защиты от шума.

Экспериментальная часть

1. Стенд для измерения характеристик шума

Стенд для измерения характеристик шума состоит из электронного имитатора источника шума и шумомера. В шумомере звуковые колебания преобразуются в электрические.

Упрощённая схема аналогового шумомера приведена на рис.2.

Рис. 2. Структурная схема шумомера

Шумомер состоит из измерительного микрофона M , переключателя D 1 (“Диапазон 1”), усилителя У , формирователя F 1 частотных характеристик с переключателем S 1 их вида (A , LIN , EXT ), второго переключателя D 2 (“Диапазон 2”), квадратичного детектора КД , формирователя временных характеристик F 2 с переключателем S 2 их вида (S – “медленно”, F – “быстро”, I – “импульс”) и индикатора И , градуированного в децибелах. Переключатели S 1 и S 2 объединены и образуют общий переключатель режимов DR (“Режим”). В положении EXT переключателя DR подключается октавный полосовой фильтр со значением частоты f сг , выбираемым переключателем DF .

В режиме S (“медленно”) осуществляется усреднение показаний шумомера. В режиме F (“быстро”) отслеживаются достаточно быстрые изменения шума, что необходимо для оценки его характера. Режим I (“импульс”) позволяет оценить максимальное среднеквадратическое значение шума. Результаты, полученные при измерениях в режимах S , F , I (уровни L S , L F , L I ), могут отличаться друг от друга в зависимости от характера измеряемого шума.

При измерении шума на рабочих местах производственных помещений микрофон располагают на высоте 1,5 м над уровнем пола или на уровне головы человека, если работа выполняется сидя, при этом микрофон должен быть направлен в сторону источника шума и удален не менее чем на 1 м от шумомера и человека, проводящего измерения. Шум следует измерять, когда работает не менее 2/3 установленных в данном помещении единиц технологического оборудования при наиболее вероятных режимах его работы.

Измерение результирующего уровня звукового давления (дБ) проводится при линейной частотной характеристике шумомера – переключатель DR (“Режим”) в положении “ LIN ”. Измерение уровней звука (дБА) осуществляется при включении корректирующего фильтра со стандартной частотной характеристикой A (переключатель DR в положении “ А ”).

Для исследования спектра шума переключатель DR устанавливается в положение “ EXT ” режима S (“медленно”). В этом случае частотная характеристика определяется подключенным октавным полосовым фильтром.

При измерениях в режиме S (“медленно”) отсчет производится по среднему положению стрелки прибора при её колебаниях. Для импульсных шумов следует дополнительно измерить уровень звука на временной характеристике I (“импульс”) с отсчетом в дБА( I ) максимального показания стрелки прибора.

Порядок работы с шумомером и выполнения работы приведены в материалах лабораторного стенда.

Отчёт должен содержать результаты измерений, результаты требуемых вычислений и графические зависимости, иллюстрирующие результаты вычислений.

1. По результатам измерения классифицировать исследуемые шумы (определить их характер).

2. Результаты измерений спектра исследуемого шума по п. 5 порядка выполнения работы L P изм (f сг ) и соответствующие варианту задания нормативные уровни (табл. 1) в октавных полосах частот L P норм (f сг ) занести в табл. 2. Для всех значений f сг занести в табл. 2 результаты вычислений по формуле (6) требуемых ослаблений уровней звукового давления L P треб .

Таблица 2

Результаты измерений и расчёта

f сг , Гц

31.5

1000

2000

4000

8000

L P изм , дБ

L P норм , дБ

L P треб , дБ

m , кг/м 2

L P осл , дБ

L P зв.из , дБ

3. На основе найденных значений L P трЕБ (f сг ) и формулы (5) вычислить и занести в табл. 2 поверхностную плотность m материала звукоизолирующего ограждения, обеспечивавшую ослабление октавных уровней звукового давления исследуемого шума до уровней, не превышающих нормативных:

m = f СГ ·10 0,05 L P треб + 2,375 , кг/м 2 .

4. Для максимального найденного значения параметра m вычислить по формуле (5) и занести в табл. 2 уровни ослабления звукового давления в каждой октавной полосе частот L P осл (f сг ) , обеспечиваемые звукоизолирующим ограждением с данным значением параметра m .

5. Для каждого значения f сг определить уровни звукового давления шума после применения звукоизолирующего ограждения:

L P зв.из = L P изм - L P осл .

6. В плоскости одного чертежа графически построить частотные зависимости L P изм (f сг ) , L P норм (f сг ) , L P треб (f сг ) и L P зв.из (f сг ) . При этом для оси частот выбрать двоичный логарифмический масштаб в соответствии с частотным рядом значений f сг . Убедиться, что уровни спектра шума после звукоизоляции L P зв.из (f сг ) во всех октавных полосах не превосходят уровней нормативного спектра L P норм (f сг ).

Контрольные вопросы

  1. Звук и его характеристики.
  2. Особенности субъективного восприятия звука человеком.
  3. Характеристики шумов и их классификация.
  4. Принципы нормирования шума.
  5. Способы и средства борьбы с шумом и их сравнительная оценка.
  6. Методика измерений параметров шума и режимы шумомера.
  7. Какие параметры шума измеряются с помощью шумомера в режимах “А”, “ LIN ” и “ EXT ”? Каковы различия между этими параметрами?

Библиографический список

  1. Борьба с шумом на производстве: Справочник /Под общ. ред. Е. Я. Юдина . М.: Машиностроение, 1985.
  2. Безопасность жизнедеятельности: Учебник для вузов /Под ред. С. В. Бело в а . М.: Высшая школа, 2004.
  3. Безопасность жизнедеятельности. Безопасность технологических процессов и производств: Учеб. пособие для вузов /П.П. Кукин и др. М.: Высшая школа, 2001.
  4. СН 2.2.4 / 2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки».

Для сниже­ния шума можно применить следующие методы:

Умень­шение шума в источнике его образования;

Снижение шума на пути его распространения - акустическая обработка помещений, изоляция источников шума, применение глушителей шума;

Использование средств индивидуальной защиты от шума;

Изменение направленности из­лучения;

Рациональная планировка предприятий и це­хов, рациональные планировочные приемы градостроительства;

1. Уменьшение шума в источнике. Борьба с шумом по­средством уменьшения его в источнике является наиболее рациональной.

Шум возникает вследствие упругих колебаний как машины в целом, так и отдельных ее деталей. Причины возникновения этих колебаний - механические, аэроди­намические, гидродинамические и электрические явле­ния, определяемые конструкцией и характером работы машины, а также неточностями, допущенными при ее изготовлении, и, наконец, условиями эксплуатации. В связи с этим различают шумы механического, аэроди­намического, гидродинамического и электромагнитного происхождения.

Механические шумы . Факторы, вызывающие шумы механического происхождения, следующие: инерционные возмущающие силы, возникающие из-за движения де­талей механизма с переменными ускорениями; соударе­ние деталей в сочленениях вследствие неизбежных зазо­ров; трение в сочленениях деталей механизмов; удар­ные процессы (ковка, штамповка) и т. д.

Основными источниками шума, происхождение кото­рого не связано непосредственно с технологическими операциями, выполняемыми машиной, являются, прежде всего, подшипники качения и зубчатые передачи, а так­же неуравновешенные вращающиеся части машины.

Зубчатые передачи - источники шума в широком диапазоне частот. Основными причинами возникновения шума являются деформации сопрягаемых зубьев под действием передаваемой нагрузки и динамические про­цессы в зацеплении, обусловленные неточностями изго­товления колес. Шум имеет дискретный характер. Шум зубчатых передач возрастает с увеличением частоты вращения колес и нагрузки.

Уменьшение механического шума может быть до­стигнуто путем совершенствования технологических процессов и оборудования. Например, внедрение авто­матической сварки вместо ручной устраняет образова­ние брызг на металле, что позволяет исключить шум­ную операцию по зачистке сварного шва. Применение фрезерных тракторов для обработки кромок металла под сварку вместо пневмозубил делает этот процесс зна­чительно менее шумным.

Нередко повышенный уровень шума является след­ствием неисправности или износа механизмов, в этом случае своевременный ремонт позволяет снизить шум.

Необходимо отметить, что проведение многих меро­приятий по борьбе с вибрациями дает од­новременно и снижение шума. Для уменьшения меха­нического шума необходимо:

Заменять ударные процессы и механизмы безударны­ми, например, применять оборудование с гидроприводом вместо оборудования с кривошипными и эксцентриковы­ми приводами;

Штамповку - прессованием, клепку - сваркой, обруб­ку - резкой и т. д.;

Заменять возвратно-поступательное движение дета­лей равномерным вращательным движением;

Применять вместо прямозубых шестерен косозубые и шевронные, а также повышать класс точности обра­ботки и уменьшать шероховатость поверхности шесте­рен; так, ликвидация погрешностей в зацеплении шесте­рен дает снижение шума па 5-10 дБ; замена прямозу­бых шестерен шевронными - 5 дБ;

По возможности заменять зубчатые и цепные пере­дачи клиноременными и зубчато-ременными, например, зубчатую передачу на клиноременную, что снижает шум на 10-14 дБ;

Заменять, когда это возможно, подшипники качения на подшипники скольжения; это снижает шум на 10- 15 дБ;

По возможности заменять металлические детали де­талями из пластмасс и других незвучных материалов либо перемежать соударяемые и трущиеся металличе­ские детали с деталями из незвучных материалов, на­пример, применять текстолитовые или капроновые шес­терни в паре со стальными; так, замена одной из сталь­ных шестерен (в паре) на капроновую снижает шум на 10-12 дБ;

Использовать пластмассы при изготовлении деталей корпусов, что дает хорошие результаты; например, за­мена стальных крышек редуктора пластмассовыми при­водит к снижению шума на 2-6 дБ на средних часто­тах и на 7-15 дБ на высоких, особенно неприятных для слухового восприятия;

При выборе металла для изготовления деталей не­обходимо учитывать, что внутреннее трение в различных металлах неодинаково, а следовательно, различна звуч­ность; например, обычная углеродистая сталь, легиро­ванная сталь являются более звучными, чем чугун; большим трением обладают после закалки сплавы из марганца с 15-20% меди и магниевые сплавы; детали из них при ударах звучат глухо и ослаблено; хроми­рование стальных деталей, например турбинных лопа­ток, уменьшает их звучность; при увеличении темпера­туры металлов на 100-150 0 С они становятся менее звучными;

Более широко применять принудительное смазывание трущихся поверхностей в сочленениях;

Применять балансировку вращающихся элементов машин;

Использовать прокладочные материалы и упругие вставки в соединениях, чтобы исключить или уменьшить передачи колебаний от одной детали или части агрегата к другой; так, при правке металлических листов нако­вальню нужно устанавливать на прокладку из демпфи­рующего материала.

Установка мягких прокладок в местах падения де­талей с конвейера или сбрасывания со станков, прокатных станов может существенно ослабить шум.

У прутковых автоматов и револьверных станков источником шума являются трубы, в которых вращается прутковый материал. Для снижения этого шума приме­няют различные конструкции малошумных труб; двухстенные трубы, между которыми проложена резина, трубы с наружной поверхностью, обернутой рези­ной, и т. и.

Для уменьшения шума, возникающего при работе галтовочных барабанов, дробилок, шаровых мельниц и других устройств, наружные стенки барабана облицо­вывают листовой резиной, асбестовым картоном или дру­гими подобными демпфирующими материалами; уста­навливают резиновые прокладки между корпусом и бронефутеровкой барабана и звукоизолирующие оболочки на расстоянии от корпуса барабана.

Аэродинамические шумы. Аэродинамические процес­сы играют большую роль в современной технике. Как правило, всякое течение газа или жидкости сопровож­дается шумом, поэтому с повышенным аэродинамиче­ским шумом приходится встречаться часто. Эти шумы являются главной составляющей шума вентиляторов, воздуходувов, компрессоров, газовых турбин, выпусков пара и воздуха в атмосферу, двигателей внутреннего сгорания и т. п.

Ко всем источникам аэродинамического шума отно­сятся: вихревые процессы в потоке рабочей среды; ко­лебания среды, вызываемые вращением лопастных ко­лес; пульсация давления рабочей среды; колебания сре­ды, вызываемые неоднородностью потока, поступающе­го на лопатки колес.

При движении тела в воздушной или газовой среде, при обдувании тела потоком среды вблизи поверхности тела периодически образуются вихри. Возникающие при срыве вихрей сжатия и разрежения сре­ды распространяются в виде звуковой волны. Такой звук называется вихревым.

Для уменьшения вихревого шума необходимо прежде всего уменьшить скорость обтекания и улучшить динамику тел.

Для машин с вращающимися рабочими колесами (вентиляторов, турбин) имеет место шум от неоднородного потока. В этом случае борьба с шумом ведется по пути улучшения аэродинамических характеристик машины.

Аэродинамический шум в источнике газотурбинной энергетической установки может быть снижен увеличением зазора между лопаточными венцами, подбором оптимального соотношения чисел направляющих и рабочих лопаток, улучшением аэродинамических характеристик проточной части компрессоров и турбин.

В большинстве случаев меры по ослаблению аэроди­намических шумов в источнике оказываются недоста­точными, поэтому дополнительное, а часто и основное снижение шума достигается путем звукоизоляции источ­ника и установки глушителей.

Гидродинамические шумы. Эти шумы возникают вследствие стационарных и нестационарных процессов в жидкостях (кавитации, турбулентности потока, гид­равлических ударов). В насосах источником шума яв­ляется кавитация жидкости, возникающая у поверхности лопастей при высоких окружных скоростях и недоста­точном давлении на всасывании.

Меры борьбы с кавитационным шумом - это улуч­шение гидродинамических характеристик насосов и вы­бор оптимальных режимов их работы. Для борьбы с шу­мом, возникающим при гидравлических ударах, необхо­димо правильно проектировать и эксплуатировать гид­росистемы, в частности, закрытие трубопроводов долж­но происходить постепенно, а не резко.

Электромагнитные шумы. Шумы электромагнитного происхождения возникают в электрических машинах и оборудовании. Причиной этих шумов является глав­ным образом взаимодействие ферромагнитных масс под влиянием переменных во времени и пространстве маг­нитных полей, а также пондеромоторные силы, вызы­ваемые взаимодействием магнитных полей, создаваемых токами. Снижение электромагнитного шума осущест­вляется путем конструктивных изменений в электриче­ских машинах, например, путем изготовления скошен­ных пазов якоря ротора. В трансформаторах необходи­мо применять более плотную прессовку пакетов, исполь­зовать демпфирующие материалы.

При работе электрических машин возникает также аэродинамический шум (в результате вращения ротора в газовой среде и движения воздушных потоков внутри машины) и механический шум, обусловленный вибраци­ей машины из-за неуравновешенности ротора, а также от подшипников и щеточного контакта. Хорошая притир­ка щеток может уменьшить шум на 8-10 дБ.

Методы борьбы с шумом

Наименование параметра Значение
Тема статьи: Методы борьбы с шумом
Рубрика (тематическая категория) Охрана Труда

Нормирование производственного шума

Производственный шум (продолжение). Вибрация.

1. Нормирование производственного шума 1

2.Методы борьбы с шумом 2

3. Ультразвук. Нормирование и защита 4

4. Инфразвук. Нормирование и защита 5

5. Вибрация 6

5.1 Виды вибрации и ее источники 6

5.2 Характеристики вибрации............................................................ 7

5.3 Действие вибрации на организм человека................................... 7

5.4 Нормирование вибрации 8

5.5 Защита от вибрации...................................................................... 9

При нормировании шума используют два метода: нормирование по предельному спектру шума и нормирование уровня звука в дбА.

Нормирование по предельному спектру. Этот метод является основным для постоянных шумов. Здесь нормируются уровни звуковых давлений в 8 октавных полосах частот с fсг = 63, 125, 250...8000 Гц. Совокупность восьми допустимых уровней звукового давления и принято называть предельным спектром (ПС).

Для каждой категории рабочих мест (конструкторские бюро, лаборатории, цеха и т.п.) регламентирован свой предельный спектр шума. Допустимые уровни звукового давления на рабочих местах приведены в ГОСТ 12.1.003-76.

Из рисунка видно, что с ростои частоты (более неприятный шум) допустимые уровни уменьшаются. Каждый из спектров имеет свой индекс, к примеру, ПС-80, где ʼʼ80ʼʼ - допустимый уровень звукового давления в октавной полосœе со среднегеометрической частотой 1000 Гц.

Нормирование уровня звука в дБА. Этот метод используется для ориентировочной оценки постоянного и непостоянного шума, когда мы не знаем спектра шума.

Уровень звука (дБА) связан с предельным спектром зависимостью

Для тонального и импульсного шумов допустимые уровни должны приниматься на 5 дБ меньше нормативных для постоянного шума.

Для оценки акустической энергии, воздействующей на человека за определœенный период времени используется Доза шума, скорректированная по частотной характеристике ʼʼАʼʼ шумомера [Па 2 × r]

где Р А - звуковое давление, соответствующее измеренному уровню звука в дБА.

Допустимая доза шума - доза, соответствующая допустимому уровню звука или допустимому эквивалентному уровню звука.

Стоит сказать, что для непостоянного шума нормированным параметром является эквивалентный (по энергии) уровень звука широкополосного, постоянного и неимпульсного шума, оказывающего на человека такое же воздействие, как и непостоянный шум (L a экв. [дБА]. Этот уровень измеряется специальными интегрирующими шумомерами.

При проектировании новых предприятий, производственных помещений крайне важно принимать меры, чтобы шум в помещениях не превышал допустимых значений. Разработке мероприятий по борьбе с шумом должен предшествовать акустический расчет. Его задачами являются:

Определœение уровня звукового давления в расчетной точке (РТ), когда известен источник шума и его шумовые характеристики;

Расчет крайне важно го снижения шума.

В качестве методов борьбы с шумом используются следующие:

2.1 Уменьшение шума в источнике (ᴛ.ᴇ. ʼʼзащита количествомʼʼ)

Борьба с шумом в источнике (посредством уменьшения уровня звуковой мощности Lp) является наиболее рациональной. Конкретные мероприятия здесь зависят от природы шума (механический, аэрогидродинамический, электромагнитный). Так уменьшение механического шума должна быть достигнуто путем совершенствования технологических процессов и оборудования. Для уменьшения аэрогидродинамического шума следует стремиться к уменьшению скоростей обтекания тел потоком среды (газовой или жидкой), к улучшению аэродинамических качеств обтекаемых тел. Снижение электромагнитного шума достигается путем конструктивных изменений в электрических машинах. К примеру, в трансформаторах крайне важно применять более плотную прессовку пакетов, использовать демпфирующие материалы.

2.2. Изменение направленности излучения шума

Этот способ следует применять при проектировании установок с направленным излучением шума, соответствующим образом ориентируя эти установки по отношению к рабочим местам или жилым массивам.

2.3. Рациональная планировка предприятий и цехов

При планировке наиболее шумные цехи должны быть сконцентрированы в одном-двух местах. Расстояние между шумными цехами и помещениями, где должен поддерживаться низкий уровень шума (конструкторское бюро и т.п.) должно быть достаточным для обеспечения крайне важно го снижения шума. В случае если предприятие расположено в черте города, шумные цехи должны находиться в глубинœе его территории.

2.4 Акустическая обработка помещений

Этот метод основан на том факте, что интенсивность шума в помещениях зависит не только от прямого, но и от отраженного звука. В случаях, когда нет возможности уменьшить прямой звук, для снижения шума можно уменьшить энергию отражаемых волн. Это достигается увеличением эквивалентной площади звукопоглощения путем размещения на его внутренних поверхностях звукопоглощающих облицовок, а также установки в помещениях штучных звукопоглотителœей.

Процесс поглощения звука происходит за счёт перехода энергии колеблющихся частиц воздуха в теплоту за счёт потерь на трение в порах материала. По этой причине для эффективного звукопоглощения материал должен обладать пористой структурой, причем поры должны быть открыты со стороны падения звука и быть незамкнутыми, чтобы не препятствовать проникновению звуковой волны в толщу материала.

Свойствами звукопоглощения обладают всœе строительные материалы. При этом звукопоглощающими материалами и конструкциями принято называть только те, у которых коэффициент звукопоглощения a на средних частотах больше 0,2. Это прежде всœего такие материалы как ультратонкое стекловолокно, минœеральная вата͵ древесноволокнистые плиты, пористый поливинилхлорид, различные пористые жесткие плиты на цементной вяжущей базе и др.

Рис. Штучные звукопоглотители 1 - защитный перфорированный слой,

2 - защитная стеклоткань, 3 - звукопогло-

щающий материал, 4 - воздушный проме-

Рис. Звукопоглощающая облицовка

У таких материалов как кирпич, бетон коэффициент звукопоглощение маn (a = 0,01 ¸ 0,05).

Звукопоглощающие облицовки снижают шум на 6-8 дБ в зоне отраженного звука (вдали от источника) и на 2-3 дБ вблизи источника. Но на высоких частотах облицовки эффективнее (8-10 дБ), таким образом, они позволяют сделать шум более глухим и, следовательно, менее раздражающим.

2.5 Уменьшение шума на пути его распространения

Этот путь предусматривает применение звукоизолирующих ограждений (стены, перегородки, экраны, кожухи, кабины и т.п.). Сущность звукоизоляции ограждения состоит в том, что падающая на него звуковая энергия отражается в гораздо большей мере, чем проникает за ограждение. Звукоизолирующие свойства ограждения характеризуются коэффициентом звукопроницаемости t

где Рпр, Рпад, Jпр, Jпад - соответственно прошедшие через ограждения и падающие на него и соответствующие им значения интенсивностей.

Звукоизоляция ограждения R = 10 lg .

Звукоизоляция ограждений тем выше, чем тяжелœее материал, из которого они сделаны.

Звукоизоляция одного и того же ограждения возрастает с увеличением частоты.

В отличие от звукопоглощающих конструкций звукоизолирующие конструкции должны быть выполнены из плотных, твердых и массивных материалов.

2.6 Глушение шума

Глушители шума применяются в основном для уменьшения шума различных аэродинамических установок и устройств. Οʜᴎ устанавливаются на воздуховодах, каналах, соплах и подразделяются на абсорбционные (поглощающие звуковую энергию), реактивные (отражающие звуковую энергию обратно к источнику) и комбинированные.

2.7 Экранирование шума

Экраны устанавливают между источником шума и рабочим местом. Эффект экранирования основан на образовании за ним области тени, куда звуковые волны проникают лишь частично. Эффективность экранирования зависит от соотношения между размерами экрана и длиной волны l: чем больше длина волны, тем меньше при данных размерах область тени за экраном, следовательно, тем меньше снижение шума. По этой причине экраны применяют в основном для защиты от средне- и высокочастотного шума. На низких частотах (l велика) экраны малоэффективны, так как за счёт эффекта дифракции звук легко их огибает.

Эффективность экрана тем выше, чем меньше расстояние от экранируемого рабочего места до источника шума.

Экраны эффективны, когда отсутствуют огибающие его отраженные волны, ᴛ.ᴇ. либо на открытом воздухе, либо в облицованном помещении, ᴛ.ᴇ. помещении, подвергнутом акустической обработке.

2.8 Средства индивидуальной защиты

К СИЗ от шума относятся наушники, шлемы, каски. При уровнях звука L ³ 135 дБА используются противошумные костюмы (типа жесткого скафандра).

Измерение шума - шумомерыШУМ-1, ШМ-1, ИШВ-2 в комплекте с октавными фильтрами, полосовые фильтры, измерительные микрофоны, магнитофоны, самописцы и др., акустическая аппаратура зарубежных фирм.

Измерение - на уровне уха работающего при включении не менее 2/3 всœего оборудования.

Методы борьбы с шумом - понятие и виды. Классификация и особенности категории "Методы борьбы с шумом" 2017, 2018.

1

Шум сегодня представляет собой вредность универсальную в том смысле, что может проникать во все сферы быта и области нашей производственной, учебной и общественной деятельности. Уровни природных и технических шумов колеблются в довольно широких пределах от 10-30дб (шелест листьев, шепот человека) до 120-130дб (грозовые разряды небесной сферы, старт реактивного самолета на расстоянии 50-100метров). Наличие такого широкого диапазона изменений уровней звукового давления свидетельствуют о том, что адаптация к нему, согласно современным представлением, может происходить как с благоприятным, так и неблагоприятным исходом.

При воздействии факторов окружающей среды на человека главным уровнем постоянства его внутренней среды является гомеостаз, который означает поддержание относительного динамического постоянства всего организма. Тайна мудрости нашего тела достигается именно гомеостазом, т.е. совершенной адаптационной деятельностью.

Шум может оказывать как специфическое действие на орган слуха, так и неспецифическое (опосредованное через центральную нервную систему) на весь организм. В первом случае может, наблюдается временное снижение порогов слуха, потом происходит постоянное снижение, затем следует тугоухость и полная глухота. Во втором случае при воздействии слабых шумов формируется реакция тренировки с ее фазами ориентировки, перестройки и тренированности; при воздействии шумов средней силы развивается реакция активации с ее фазами первичной и стойкой активации; при воздействии сильных шумов формируется стресс-реакция с ее фазами тревоги, устойчивости и истощения. Если первые две реакции (тренировки и активации) свидетельствуют о нормальной адаптации человеческого организма к шуму, то третья реакция, являясь стрессовой, характеризует патологическую адаптацию к звуковому раздражителю последствиями для здоровья людей.

Из краткого рассмотрения последствий неблагоприятного воздействия шума на организм человека явствует, что с этим вредным фактором необходимо бороться и бороться серьезно, используя для этого все возможные способы снижения его уровней до допустимых величин.

Немецкий микробиолог Роберт Кох, открывший возбудителя туберкулеза (палочку, названную его именем) по поводу снижения уровней шума писал следующее: «Когда-нибудь человечество будет вынуждено расправляться с шумом столь же решительно, как оно расправляется с холерой и чумой».

К настоящему времени, как в РФ, так и за рубежом разработано множество подходов к снижению зашумленности внутри и снаружи жилищ, учебных и лечебных помещений, общественных зданий, а так же к уменьшению уровней звукового дискомфорта на улицах и открытых пространствах, прилегающих к жилым постройкам. Все эти мероприятия делятся на группы мер, с помощью которых можно снизить уровни шумов, как в источниках их образования, так и на пути их распространения. Борьба с шумом в источнике производится инженерно-техническими и организационно-административными методами, а на пути распространения шума в городской среде от источника до защищаемого объекта - градостроительными и строительно-акустическими методами. В самом объекте шумозащиты снижение уровней звука обеспечивается конструктивно-строительными методами, повышающими звукоизолирующие качества ограждающих конструкций здании и сооружений и планировочными методами.

Рассмотрим некоторые из них более подробно.

Организационно-административные мероприятия

Значительное снижение уровней транспортного шума может быть достигнуто за счет снижения интенсивности и шумности транспортных потоков. Например, при организации грузовых перевозок определяют категорию грузов (промышленные, строительные, потребительские, топливные, по очистке города) и используют для их проезда специальные дороги, минуя общегородские центры. Менеджмент транспортного потока предусматривает также обеспечение комфорта населения в дневное и ночное время, прогнозирование уровней транспортного шума в строящихся микрорайонах, уменьшение шума на более опасных участках и прочее другое.

Система организационно-административных мероприятий предусматриваем:

  1. улучшение содержания дорог и применение менее шумных типов улично-дорожных покрытий;
  2. обеспечение на магистралях рациональной скорости движения;
  3. исключение движения автомобильного, особенно грузового транспорта в центральных районах города и на улицах жилой застройки. При этом предусматривается устройство пешеходных зон, вывоз транзитного транспорта на объездные дороги, установление одностороннего движения, ограничения ночного движения и т.д.
  4. улучшение условий движения на перегонах и пересечениях.
  5. максимальное развитие общественного транспорта в городе и повышение его конкурентоспособности с индивидуальными транспортными средствами по скорости и комфорту, а также развитии велосипедного транспорта с устройством для них велосипедных дорожек

Следует подчеркнуть, что снижение шума наземного транспорта путем использования шумопоглощающих дорожных покрытий является одним из весьма перспективных методов. При этом на характеристики шума существенным образом влияет состав и состояние дорожного покрытия. Так, бетонное покрытие на 2-3дб (А) шумнее, чем асфальтовые, в дождь шум потока может возрасти на 5-6 дб (А), а в снегопад снизиться на 3-5дб (А).

Градостроительные и строительно-акустические мероприятия

Основная доля затрат по шумоподавлению в развитых странах связана с установкой шумозащитных сооружений, наиболее распространенных из которых в городах и на дорогах являются акустические экраны, а основным звукоизолирующим ограждением - двойные или тройные акустические защитные окна. Например, в Германии за последние десятилетие расходы на установку акустических экранов и защитных окон составляет более 90% всех расходов на защиту от шума.

Звукоизоляция - это самая дешевая из всех видов шумозащита и при этом достигается акустическая эффективность (15-20дб (А)), особенно в высоко - и среднечастотном диапазоне. Однако для снижения низкочастотного шума использование только звукозащитных сооружений зачастую недостаточно.

В настоящее время применяют десятки самых разных конструкций акустических экранов, которые могут быть разделены на 5 основных классов:

  1. широкие акустические экраны;
  2. акустические экраны - стенки;
  3. комбинированные акустические экраны;
  4. гибридные акустические экраны;
  5. экранные комплексы.

В качестве широких акустических экранов, обеспечивающих снижение шума в жилой застройке, как за счет высоты, так и существенного дополнительного затухания на широком свободном ребре этих экранов, могут рассматриваться жилые высотные дома, выемки, насыпи, а так же нежилые здания различного назначения. Весьма эффективным мероприятием является использование тоннелей, построенных открытым способом или щитовой проходкой. Помимо снижения уличного шума использование подземного пространства для прокладки магистралей улучшает условия передвижения населения, способствует формированию здоровой, удобной и эстетически привлекательной среды.

Наибольшее распространение получили акустические стенки - экраны, которые имеют самое разнообразное конструктивное исполнение и изготовляется из различных материалов. Так, простые стенки можно делать из бетона, дерева и других материалов. Основной недостаток таких конструкций - наличие звукоотражающего эффекта, который усиливается, если подобные сооружения устанавливаются параллельно друг другу. Эффективность экранов такого типа не превышает 5-12дб (А).

Указанных недостатков лишены акустические экраны со звукопоглощающим материалом. Они бывают сборно-разборными, как правило, из металла. Основным элементом таких экранов является акустическая панель, заполненная звукопоглощающим материалом. Эта панель имеет щелевую перфорацию со стороны источника звука. Наличие сорбционного материала увеличивает эффективность таких панелей не менее чем на 3-5бдб (А). Необходимая эффективность экранов данного типа обеспечивается за счет варьирования их высоты, длины, расстояния между источниками шума и экраном.

Перспективным является использование комбинированных акустических экранов, в которых сочетается преимущества акустических экранов - стенок и насыпи или выемок. Их эффективность чрезвычайно высока без дополнительных затрат, связанных с увеличением глубины выемки или высоты насыпи.

Там, где необходимо достичь снижения шума по всему частотному диапазону (в больницах, школах), целесообразно использовать гибридные акустические экраны, сочетающее заглушающее свойства акустических экранов со звукопоглощающим материалом и активных глушителей шума, излучающих звук в противофазе заглушаемому шуму.

Мероприятия по шумоглушению с использованием технических средств.

Традиционно наиболее эффективны для снижения внешнего шума автомобилей следующие методы:

  1. установка глушителей шума на впуске и выпуске двигателя;
  2. улучшения качества трансмиссии;
  3. вибродемпфирование коробки передач;
  4. улучшение качества дорожного покрытия;
  5. предотвращения износа шин;
  6. звукоизоляция и звукопоглощение внешних источников шума автомобиля.

Важное значение в шумозащите принадлежит зеленым насаждениям. Еще в Советском Союзе были проведены исследования шумопогллщающих свойств различных пород деревьев. Некоторые из них, преимущественно лиственные, такие как клен, тополь и липа, являются с этой точки зрения более выгодными, чем кирпичная или бетонная стена.

Создание в городах пояса из этих деревьев выгодна потому, что они не только задерживают пыль и вредные химические вещества, но и являются эффективным препятствием против распространения шума, который в результате этого снижается на 7-9дб (А) в летние месяцы и на 3-4дб (А) зимой.

Меры по уменьшению шума самолетов

Наиболее эффективные меры борьбы с авиационным шумом - это меры при проектировании и строительстве авиадвигателей. Современное состояние техники позволяет переоборудовать старые типы самолетов, добиваясь понижения шума их двигателей. Но переоборудование парка самолетов - мероприятие слишком дорогое. В ближайшем будущем также нельзя надеяться на создание новых конструкций, которые оказались бы много тише, чем допускают принятые сейчас международные нормы.

Можно применять особые приемы при взлете и посадке, позволяющие уменьшить шум: рациональное расположение взлетно-посадочных полос, уменьшение числа ночных полетов, а так же общие сокращение числа рейсов вследствие перехода на большегрузные современные модели лайнеров. Рациональным является создание у каждого аэродрома двух защитных зон. В первой защитной зоне уровень шума, усредненный за дневное время по эквивалентному уровню не должен превышать Lэкв = 65дб А, а за ночное - не более L экв =55дб А.

Снижение уровня шума на территории жилой застройки до рекомендуемого допустимого и уменьшение зоны санитарного разрыва может быть достигнуто планировочными, технологическими, техническими и организационными технологиями.

Библиографическая ссылка

Некипелова О.О., Некипелов М.И., Маслова Е.С., Урдаева Т.Н. ШУМ, КАК АКУСТИЧЕСКИЙ СТРЕССОР, И МЕРЫ БОРЬБЫ С НИМ // Фундаментальные исследования. – 2006. – № 5. – С. 55-57;
URL: http://fundamental-research.ru/ru/article/view?id=5032 (дата обращения: 06.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

При разработке технологических процессов, проектировании, изготовлении и эксплуатации машин, производственных зданий и сооружений, а также при организации рабочего места следует принимать все необходимые меры по снижению шума, ультразвука и вибрации на рабочем месте до значений, не превышающих допустимых, указанных в ГОСТ 12.1.003 и ГОСТ 12.1.001.

Осуществлять эти меры следует: техническими средствами борьбы с шумом (уменьшением шума машин в источнике; применением технологических процессов, при которых уровни звукового давления на рабочих местах не превышают допустимые; применением дистанционного управления шумными машинами; автоматизацией управления шумными машинами; применением звукоизолирующих кожухов, полукожухов, кабин; устройством систем блокировок, отключающих генераторы источника ультразвука при нарушении звукоизоляции и др.); строительно-акустическими мероприятиями; применением средств индивидуальной защиты; организационными мероприятиями (выбором рационального режима труда и отдыха, сокращением времени нахождения в шумных условиях, лечебно-профилактическими и другими мероприятиями).

Зоны с уровнем звука выше 85 дБ должны, быть обозначены знаками безопасности. Работающих в этих зонах администрация обязана снабжать средствами индивидуальной защиты. Запрещается даже кратковременное пребывание в зонах с октавными уровнями звукового давления свыше 135 дБ в любой октавной полосе.

На предприятиях, в организациях и учреждениях должен быть обеспечен контроль уровней шума на рабочих местах и установлены правила безопасной работы в шумных условиях.

Конструктивные и планировочные решения по борьбе с шумами. Уменьшить шум в источнике можно за счет повышения точности изготовления отдельных узлов машины, уменьшения зазоров, улучшения статической и динамической балансировки движущихся частей, замены звучных материалов менее звучными (стальных шестерен пластмассовыми), устройства глушителей шума. Глушители, разделяются на активные-поглощающие поступившую в них звуковую энергию и реактивные - отражающие энергию обратно к источнику.



Интенсивный шум, вызванный вибрацией, можно уменьшить покрытием вибрирующей поверхности материалом с большим внутренним трением (резиной, асбестом, битумом), при этом часть звуковой энергии поглощается. Чем больше плотность прилегания материала к вибрирующей поверхности, тем больше эффект поглощения.

Звукопоглощение обусловлено переходом колебательной энергии в тепло за счет трения в звукопоглотителе. Материалы, имеющие хорошие звукопоглощающие свойства, сравнительно легки, пористы (минеральный войлок, стекловата, поролон). В малых помещениях звукопоглотительными материалами облицовывают стены. В больших помещениях (более 300 м) облицовка малоэффективна, и в них снижение шума достигается при помощи звукопоглощающих экранов (плоских и объемных). Экраны размещают вблизи источников шума, и снижение шума при этом достигает 7-8 дБ.

Звукоизоляция-это метод снижения шума путем создания конструкций, препятствующих распространению шума из одного в другое изолируемое помещение. Звукоизолирующие конструкции изготовляют из плотных твердых материалов (металла, дерева, пластмасс), хорошо препятствующих распространению шума.

Шумящие агрегаты можно изолировать при помощи звукоизолирующих полукожухов, кожухов, кабин, которые следует устанавливать без жестких связей с оборудованием. Для увеличения эффективности звукоизоляции внутренние поверхности кожухов облицовывают звукопоглощающими материалами.

Снижение вредного воздействия производственного шума на другие здания может быть достигнуто рациональной планировкой цехов и размещением зеленых насаждений на территории предприятия.

Снижение шума строительно-акустическими мероприятиями. К числу основных строительно-акустических мероприятий по снижению уровней звукового давления в цехах относятся: установка оборудования, производящего шум меньших уровней; установка оборудования и машин в отдельное помещение с повышенной звукоизоляцией конструкций и минимальными размерами необходимых технологических отверстий; установка звукоизолирующих полукожухов, кожухов и кабин закрытого и полуоткрытого типов для оператора (рисунок 1), а также звукоизолирующих укрытии для вспомогательного персонала, кабин для отдыха и дистанционного управления; установка акустических экранов у наиболее интенсивных источников шума; устройство вибропоглощающих покрытий; устройство глушителей шума в системах отопления, вентиляции и кондиционирования воздуха, вакуум-насосах, компрессорных установках, выделение приводного оборудования в отдельное помещение либо частичная его изоляция с обязательным устройством звукопоглощающей облицовки на участке размещения приводного оборудования; установка глушителей на технологические конвейеры подачи древесины окорочного барабана к рубильной машине; установка приемных и выгрузочных воронок к рубильной машине из металлов с демпфирующим слоем.

Уменьшения шума в производственных помещениях можно достичь его локализацией около источника звукоизолирующими кожухами, кабинами, камерами.

Средства индивидуальной защиты от шума. Применение средств индивидуальной защиты целесообразно в тех случаях, когда активные методы либо не обеспечивают желаемого акустического эффекта, либо являются неэкономичными, а также в период разработки основных мероприятий по шумоглушению.

К средствам индивидуальной защиты от шума относятся вкладыши, наушники, шлемы - они позволяют снизить шум до 40 дБ.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Красивоцветущие. Плодово-ягодные. Декоративно-лиственные